On Morley's theorem, determinantal identities and the QR algorithm

被引:0
作者
Macfarlane, A. J. [1 ]
机构
[1] DAMTP, Ctr Math Sci, Cambridge CB3 0WA, England
来源
QUANTUM GROUPS, QUANTUM FOUNDATIONS, AND QUANTUM INFORMATION: A FESTSCHRIFT FOR TONY SUDBERY | 2010年 / 254卷
关键词
CELLULAR-AUTOMATA;
D O I
10.1088/1742-6596/254/1/012004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Three results are shown in this contribution. First, the diagram used in the proof of Morley's theorem is shown to provide a template for the creation of a closed solid figure. Second, it is shown how a proposition governing a class of determinants can be used to produce a rich supply of identities involving, e.g., Fibonacci and related families of numbers. Finally, it is shown in the case of an arbitrary 2 x 2 symmetric matrix A, how to obtain explicit expressions for all the elements of all the matrices involved in implementing the determination of the eigenvalues of A by means of the QR algorithm.
引用
收藏
页数:8
相关论文
共 11 条
  • [1] [Anonymous], 2006, Applied Linear Algebra
  • [2] Barbara R., 1997, MATH GAZ, V81, P447
  • [3] Golub G.H., 1984, Matrix Computations, Vsecond
  • [4] Macfarlane AJ, 2010, FIBONACCI QUART, V48, P68
  • [5] Linear reversible second-order cellular automata and their first-order matrix equivalents
    Macfarlane, AJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (45): : 10791 - 10814
  • [6] MACFARLANE AJ, MATH GAZETT IN PRESS
  • [7] MACFARLANE AJ, QR ALGORITHM E UNPUB
  • [8] Scott J. A., 2002, MATH GAZ, V86, P80
  • [9] Strang G., 1986, Introduction to Applied Mathematics
  • [10] Weisstein EricW., 1999, CRC CONCISE ENCY MAT