Random matrix theory for the Hermitian Wilson Dirac operator and the chGUE-GUE transition

被引:20
作者
Akemann, Gernot [1 ]
Nagao, Taro [2 ]
机构
[1] Univ Bielefeld, Dept Phys, D-33501 Bielefeld, Germany
[2] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 648602, Japan
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2011年 / 10期
基金
日本学术振兴会;
关键词
Matrix Models; Lattice QCD; Chiral Lagrangians; GAUSSIAN ENSEMBLES; SPECTRAL DENSITY; EIGENVALUE; LATTICE; UNIVERSALITY; EXPRESSIONS; UNITARY; MODELS; LIMIT;
D O I
10.1007/JHEP10(2011)060
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We introduce a random two-matrix model interpolating between a chiral Hermitian (2n+nu)x(2n+nu) matrix and a second Hermitian matrix without symmetries. These are taken from the chiral Gaussian Unitary Ensemble (chGUE) and Gaussian Unitary Ensemble (GUE), respectively. In the microscopic large-n limit in the vicinity of the chGUE (which we denote by weakly non-chiral limit) this theory is in one to one correspondence to the partition function of Wilson chiral perturbation theory in the epsilon regime, such as the related two matrix-model previously introduced in [32, 33]. For a generic number of flavours and rectangular block matrices in the chGUE part we derive an eigenvalue representation for the partition function displaying a Pfaffian structure. In the quenched case with nu = 0, 1 we derive all spectral correlations functions in our model for finite-n, given in terms of skew-orthogonal polynomials. The latter are expressed as Gaussian integrals over standard Laguerre polynomials. In the weakly non-chiral microscopic limit this yields all corresponding quenched eigenvalue correlation functions of the Hermitian Wilson operator.
引用
收藏
页数:32
相关论文
共 60 条
  • [1] A new chiral two-matrix theory for Dirac spectra with imaginary chemical potential (vol 766, pg 34, 2007)
    Akemann, G.
    Damgaard, P. H.
    Osborn, J. C.
    Splittorff, K.
    [J]. NUCLEAR PHYSICS B, 2008, 800 (1-2) : 406 - 407
  • [2] A new chiral two-matrix theory for Dirac spectra with imaginary chemical potential
    Akemann, G.
    Damgaard, P. H.
    Osborn, J. C.
    Splittorff, K.
    [J]. NUCLEAR PHYSICS B, 2007, 766 (1-3) : 34 - 67
  • [3] Unquenched QCD Dirac operator spectra at nonzero baryon chemical potential
    Akemann, G
    Osborn, JC
    Splittorff, K
    Verbaarschot, JJM
    [J]. NUCLEAR PHYSICS B, 2005, 712 (1-2) : 287 - 324
  • [4] Distributions of Dirac operator eigenvalues
    Akemann, G
    Damgaard, PH
    [J]. PHYSICS LETTERS B, 2004, 583 (1-2) : 199 - 206
  • [5] Spectrum of the Wilson Dirac operator at finite lattice spacings
    Akemann, G.
    Damgaard, P. H.
    Splittorff, K.
    Verbaarschot, J. J. M.
    [J]. PHYSICAL REVIEW D, 2011, 83 (08):
  • [6] Universality of random matrices in the microscopic limit and the Dirac operator spectrum
    Akemann, G
    Damgaard, PH
    Magnea, U
    Nishigaki, S
    [J]. NUCLEAR PHYSICS B, 1997, 487 (03) : 721 - 738
  • [7] Skew-orthogonal Laguerre polynomials for chiral real asymmetric random matrices
    Akemann, G.
    Kieburg, M.
    Phillips, M. J.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (37)
  • [8] Finite size scaling of meson propagators with isospin chemical potential
    Akemann, G.
    Basile, F.
    Lellouch, L.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2008, (12):
  • [9] Characteristic polynomials in real Ginibre ensembles
    Akemann, G.
    Phillips, M. J.
    Sommers, H-J
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (01)
  • [10] Akemann G., 2010, 28 INT S LATT FIELD, P079