Optimized Li4Ti5O12 Nanoparticles by Solvothermal Route for Li-Ion Batteries

被引:6
|
作者
Mathew, Vinod [1 ]
Lim, Jinsub [1 ]
Gim, Jihyeon [1 ]
Kim, Donghan [1 ]
Moon, Jieh [1 ]
Kang, Jungwon [1 ]
Kim, Jaekook [1 ]
机构
[1] Chonnam Natl Univ WCU, Dept Mat Sci & Engn, Kwangju 500757, South Korea
关键词
Spinel; Nanocrystal; Li4Ti5O12; Electrode; Lithium Batteries; ELECTROCHEMICAL PROPERTIES; SPINEL LI4TI5O12; ANODE MATERIAL; POLYOL MEDIUM; PERFORMANCE; INSERTION; INTERCALATION;
D O I
10.1166/jnn.2011.4785
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Li4Ti5O12 (LTO) nanoparticles were successfully synthesized by solvothermal technique using cost-effective precursors in polyol medium and post-annealed at temperatures of 400,500, and 600 degrees C. The XRD patterns of the samples were clearly indexed to the spinel shaped Li4Ti5O12 (space group, Fd-3 m). The particle size and morphology of samples were identified using field-emission SEM. The electrochemical performance of solvothermal samples revealed fairly high initial discharge/charge specific capacities in the range 230-235 and 170-190 mAh/g, at 1 C-rate, while that registered for the solid-state sample has been 160 and 150 mAh/g, respectively. Furthermore, among these samples, LTO annealed at 500 degrees C exhibited highly improved rate performances at C-rates as high as 30 and 60 C. This was attributed to the achievement of small particle sizes with high crystallinity in nano-scale dimensions and hence shorter diffusion paths combined with larger contact area at the electrode/electrolyte interface.
引用
收藏
页码:7294 / 7298
页数:5
相关论文
共 50 条
  • [1] Synthesis and characterization Li4Ti5O12 for Li-ion batteries
    Yilmaz, Mehmet
    Aydin, Serdar
    Turgut, Guven
    Yurtcan, Mustafa Tolga
    Demir, Yasar
    Ertugrul, Mehmet
    ENERGY EDUCATION SCIENCE AND TECHNOLOGY PART A-ENERGY SCIENCE AND RESEARCH, 2011, 28 (01): : 411 - 416
  • [2] Fabrication of Li4Ti5O12 (LTO) as Anode Material for Li-Ion Batteries
    Julien, Christian M.
    Mauger, Alain
    MICROMACHINES, 2024, 15 (03)
  • [3] Enhanced High-Rate Performance of Li4Ti5O12 Nanoparticles for Rechargeable Li-Ion Batteries
    Lim, Jinsub
    Choi, Eunseok
    Mathew, Vinod
    Kim, Donghan
    Ahn, Docheon
    Gim, Jihyeon
    Kang, Sun-Ho
    Kim, Jaekook
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) : A275 - A280
  • [4] Electrochemical performance of Li4Ti5O12/carbon nanofibers composite prepared by an in situ route for Li-ion batteries
    Chun-Yang Wu
    Yu-Xiang Wang
    Jian Xie
    Gao-Shao Cao
    Tie-Jie Zhu
    Xin-Bing Zhao
    Journal of Solid State Electrochemistry, 2012, 16 : 3915 - 3921
  • [5] Electrochemical performance of Li4Ti5O12/carbon nanofibers composite prepared by an in situ route for Li-ion batteries
    Wu, Chun-Yang
    Wang, Yu-Xiang
    Xie, Jian
    Cao, Gao-Shao
    Zhu, Tie-Jie
    Zhao, Xin-Bing
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (12) : 3915 - 3921
  • [6] Solvothermal synthesis of micro-/nanoscale Cu/Li4Ti5O12 composites for high rate Li-ion batteries
    Li, Na
    Liang, Jianwen
    Wei, Denghu
    Zhu, Youngchun
    Qian, Yitai
    ELECTROCHIMICA ACTA, 2014, 123 : 346 - 352
  • [7] High Performance Li4Ti5O12/Si Composite Anodes for Li-Ion Batteries
    Chen, Chunhui
    Agrawal, Richa
    Wang, Chunlei
    NANOMATERIALS, 2015, 5 (03): : 1469 - 1480
  • [8] Electrochemical Oscillation during the Galvanostatic Charging of Li4Ti5O12 in Li-Ion Batteries
    Lan, Tu
    Qiao, Qian
    Hu, Fangxu
    Li, De
    Chen, Yong
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (27): : 14549 - 14558
  • [9] Nanoscale LiFePO4 and Li4Ti5O12 for High Rate Li-Ion Batteries
    Jaiswal, A.
    Horne, C. R.
    Chang, O.
    Zhang, W.
    Kong, W.
    Wang, E.
    Chern, T.
    Doeff, M. M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (12) : A1041 - A1046
  • [10] Ion-Exchange Synthesis of Li4Ti5O12 Nanotubes and Nanoparticles for High-Rate Li-Ion Batteries
    Yagi, Shunsuke
    Morinaga, Tadahiko
    Togo, Masakazu
    Tsuda, Hiroshi
    Shio, Shoichiro
    Nakahira, Atsushi
    MATERIALS TRANSACTIONS, 2016, 57 (01) : 42 - 45