A remark on Krein's resolvent formula and boundary conditions

被引:31
作者
Albeverio, S
Pankrashkin, K
机构
[1] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
[2] BiBoS Res Ctr, Bielefeld, Germany
[3] Univ Svizzera Italiana, CERFIM Locarno, Acad Architettura, Mendrisio, Switzerland
[4] Univ Trent, Dipartimento Matemat, Trento, Italy
[5] Humboldt Univ, Inst Math, D-10099 Berlin, Germany
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2005年 / 38卷 / 22期
关键词
D O I
10.1088/0305-4470/38/22/010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove an analogue of Krein's resolvent formula expressing the resolvents of self-adjoint extensions in terms of boundary conditions. Applications to quantum graphs and systems with point interactions are discussed.
引用
收藏
页码:4859 / 4864
页数:6
相关论文
共 15 条
[1]  
ALBEVERIO S, 2000, SINGULAR PERTURBATIO
[2]  
Albeverio S., 1988, Solvable Models in Quantum Mechanics
[3]  
[Anonymous], FUNCT ANAL APPL
[4]  
[Anonymous], USPEKHI MAT NAUK
[5]  
[Anonymous], FUNCT ANAL APPL, DOI 10.1007/BF01076418
[6]   Scattering on compact manifolds with infinitely thin horns [J].
Brüning, J ;
Geyler, VA .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (02) :371-405
[7]   An approximation to δ′ couplings on graphs [J].
Cheon, T ;
Exner, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (29) :L329-L335
[8]   GENERALIZED RESOLVENTS AND THE BOUNDARY-VALUE-PROBLEMS FOR HERMITIAN OPERATORS WITH GAPS [J].
DERKACH, VA ;
MALAMUD, MM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 95 (01) :1-95
[9]  
Gorbachuk V. I., 1991, BOUNDARY VALUE PROBL
[10]   Hermitian symplectic geometry and extension theory [J].
Harmer, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (50) :9193-9203