Integrating genetic gain and gap analysis to predict improvements in crop productivity

被引:84
作者
Cooper, Mark [1 ]
Tang, Tom [2 ]
Gho, Carla [3 ]
Hart, Tim [2 ]
Hammer, Graeme [1 ]
Messina, Carlos [2 ]
机构
[1] Univ Queensland, Ctr Crop Sci, Queensland Alliance Agr & Food Innovat, Brisbane, Qld 4072, Australia
[2] Corteva Agrisci, Res & Dev, Johnston, IA 50131 USA
[3] Corteva Agrisci, Viluco Expt Stn, Santa Filomena 1609,POB 267, Buin, Chile
关键词
MAIZE YIELD; ENVIRONMENT INTERACTIONS; GRAIN-SORGHUM; DROUGHT; SENSITIVITY; GENOTYPE; PATTERNS; MODELS; WHEAT;
D O I
10.1002/csc2.20109
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
A Crop Growth Model (CGM) is used to demonstrate a biophysical framework for predicting grain yield outcomes for Genotype by Environment by Management (GxExM) scenarios. This required development of a CGM to encode contributions of genetic and environmental determinants of biophysical processes that influence key resource (radiation, water, nutrients) use and yield-productivity within the context of the target agricultural system. Prediction of water-driven yield-productivity of maize for a wide range of GxExM scenarios in the U.S. corn-belt is used as a case study to demonstrate applications of the framework. Three experimental evaluations are conducted to test predictions of GxExMyield expectations derived from the framework: (1) A maize hybrid genetic gain study, (2) A maize yield potential study, and (3) A maize drought study. Examples of convergence between key GxExM predictions from the CGM and the results of the empirical studies are demonstrated. Potential applications of the prediction framework for design of integrated crop improvement strategies are discussed. The prediction framework opens new opportunities for rapid design and testing of novel crop improvement strategies based on an integrated understanding of GxExM interactions. Importantly the CGM ensures that the yield predictions for the GxExM scenarios are grounded in the biophysical properties and limits of predictability for the crop system. The identification and delivery of novel pathways to improved crop productivity can be accelerated through use of the proposed framework to design crop improvement strategies that integrate genetic gains from breeding and crop management strategies that reduce yield gaps.
引用
收藏
页码:582 / 604
页数:23
相关论文
共 58 条
[1]   Predicting crop yields and soil-plant nitrogen dynamics in the US Corn Belt [J].
Archontoulis, Sotirios, V ;
Castellano, Michael J. ;
Licht, Mark A. ;
Nichols, Virginia ;
Baum, Mitch ;
Huber, Isaiah ;
Martinez-Feria, Rafael ;
Puntel, Laila ;
Ordonez, Raziel A. ;
Iqbal, Javed ;
Wright, Emily E. ;
Dietzel, Ranae N. ;
Helmers, Matt ;
Vanloocke, Andy ;
Liebman, Matt ;
Hatfield, Jerry L. ;
Herzmann, Daryl ;
Cordova, S. Carolina ;
Edmonds, Patrick ;
Togliatti, Kaitlin ;
Kessler, Ashlyn ;
Danalatos, Gerasimos ;
Pasley, Heather ;
Pederson, Carl ;
Lamkey, Kendall R. .
CROP SCIENCE, 2020, 60 (02) :721-738
[2]   Analysis of Long Term Study Indicates Both Agronomic Optimal Plant Density and Increase Maize Yield per Plant Contributed to Yield Gain [J].
Assefa, Yared ;
Carter, Paul ;
Hinds, Mark ;
Bhalla, Gaurav ;
Schon, Ryan ;
Jeschke, Mark ;
Paszkiewicz, Steve ;
Smith, Stephen ;
Ciampitti, Ignacio A. .
SCIENTIFIC REPORTS, 2018, 8
[3]   The US drought of 2012 in perspective: A call to action [J].
Boyer, J. S. ;
Byrne, P. ;
Cassman, K. G. ;
Cooper, M. ;
Delmer, D. ;
Greene, T. ;
Gruis, F. ;
Habben, J. ;
Hausmann, N. ;
Kenny, N. ;
Lafitte, R. ;
Paszkiewicz, S. ;
Porter, D. ;
Schlegel, A. ;
Schussler, J. ;
Setter, T. ;
Shanahan, J. ;
Sharp, R. E. ;
Vyn, T. J. ;
Warner, D. ;
Gaffney, J. .
GLOBAL FOOD SECURITY-AGRICULTURE POLICY ECONOMICS AND ENVIRONMENT, 2013, 2 (03) :139-143
[4]  
Breiman L., 1984, Classification and Regression Trees, DOI DOI 10.1201/9781315139470
[5]  
Campos H, 2006, MAYDICA, V51, P369
[6]   Evaluating plant breeding strategies by simulating gene action and dryland environment effects [J].
Chapman, S ;
Cooper, M ;
Podlich, D ;
Hammer, G .
AGRONOMY JOURNAL, 2003, 95 (01) :99-113
[7]   Genotype by environment interactions affecting grain sorghum. III. Temporal sequences and spatial patterns in the target population of environments [J].
Chapman, SC ;
Hammer, GL ;
Butler, DG ;
Cooper, M .
AUSTRALIAN JOURNAL OF AGRICULTURAL RESEARCH, 2000, 51 (02) :223-233
[8]   Environment characterization as an aid to wheat improvement: interpreting genotype-environment interactions by modelling water-deficit patterns in North-Eastern Australia [J].
Chenu, K. ;
Cooper, M. ;
Hammer, G. L. ;
Mathews, K. L. ;
Dreccer, M. F. ;
Chapman, S. C. .
JOURNAL OF EXPERIMENTAL BOTANY, 2011, 62 (06) :1743-1755
[9]  
Choudhary S., 2013, CROP SCI, V54, P1147
[10]  
Comstock R. E., 1977, Proceedings of the International Conference on Quantitative Genetics, August 16-21, 1976., P705