Phosphoenolpyruvate:glucose phosphotransferase system modification increases the conversion rate during L-tryptophan production in Escherichia coli

被引:24
作者
Liu, Lina [1 ,2 ,3 ]
Chen, Sheng [1 ,2 ,3 ]
Wu, Jing [1 ,2 ,3 ]
机构
[1] Jiangnan Univ, State Key Lab Food Sci & Technol, 1800 Lihu Ave, Wuxi 214122, Peoples R China
[2] Jiangnan Univ, Sch Biotechnol, 1800 Lihu Ave, Wuxi 214122, Peoples R China
[3] Jiangnan Univ, Minist Educ, Key Lab Ind Biotechnol, 1800 Lihu Ave, Wuxi 214122, Peoples R China
关键词
L-Tryptophan; Conversion rate; Pyruvate kinase; HPr; Phosphoenolpyruvate: glucose phosphotransferase system; HISTIDINE-CONTAINING PROTEIN; STRAINS; GENE; PHOSPHORYLATION; GLUCOSE; HYPERPRODUCTION; FERMENTATION; METABOLISM; TRANSPORT; BACTERIA;
D O I
10.1007/s10295-017-1959-3
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Escherichia coli FB-04(pta1), a recombinant L-tryptophan production strain, was constructed in our laboratory. However, the conversion rate (L-tryptophan yield per glucose) of this strain is somewhat low. In this study, additional genes have been deleted in an effort to increase the conversion rate of E. coli FB-04(pta1). Initially, the pykF gene, which encodes pyruvate kinase I (PYKI), was inactivated to increase the accumulation of phosphoenolpyruvate, a key L-tryptophan precursor. The resulting strain, E. coli FB-04(pta1)Delta pykF, showed a slightly higher L-tryptophan yield and a higher conversion rate in fermentation processes. To further improve the conversion rate, the phosphoenolpyruvate:glucose phosphotransferase system (PTS) was disrupted by deleting the ptsH gene, which encodes the phosphocarrier protein (HPr). The levels of biomass, L -tryptophan yield, and conversion rate of this strain, E. coli FB-04(pta1)Delta pykF/ptsH, were especially low during fed-batch fermentation process, even though it achieved a significant increase in conversion rate during shake-flask fermentation. To resolve this issue, four HPr mutations (N12S, N12A, S46A, and S46N) were introduced into the genomic background of E. coli FB-04(pta1)Delta pykF/ptsH, respectively. Among them, the strain harboring the N12S mutation (E. coli FB-04(pta1)Delta pykF-ptsHN12S) showed a prominently increased conversion rate of 0.178 g g(-1) during fed-batch fermentation; an increase of 38.0% compared with parent strain E. coli FB-04(pta1). Thus, mutation of the genomic of ptsH gene provided an alternative method to weaken the PTS and improve the efficiency of carbon source utilization.
引用
收藏
页码:1385 / 1395
页数:11
相关论文
共 41 条
  • [41] The phosphoenolpyruvate-dependent glucose-phosphotransferase system from Escherichia coli K-12 as the center of a network regulating carbohydrate flux in the cell
    Gabor, Elisabeth
    Goehler, Anna-Katharina
    Kosfeld, Anne
    Staab, Ariane
    Kremling, Andreas
    Jahreis, Knut
    EUROPEAN JOURNAL OF CELL BIOLOGY, 2011, 90 (09) : 711 - 720