Pseudo-Extended Markov Chain Monte Carlo

被引:0
作者
Nemeth, Christopher [1 ]
Lindsten, Fredrik [2 ]
Filippone, Maurizio [3 ]
Hensman, James [4 ]
机构
[1] Univ Lancaster, Dept Math & Stat, Lancaster, England
[2] Linkoping Univ, Dept Comp & Informat Sci, Linkoping, Sweden
[3] EURECOM, Dept Data Sci, Sophia Antipolis, France
[4] PROWLER Io, Cambridge, England
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019) | 2019年 / 32卷
基金
英国工程与自然科学研究理事会; 瑞典研究理事会;
关键词
HORSESHOE; INFERENCE; SAMPLER;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sampling from posterior distributions using Markov chain Monte Carlo (MCMC) methods can require an exhaustive number of iterations, particularly when the posterior is multi-modal as the MCMC sampler can become trapped in a local mode for a large number of iterations. In this paper, we introduce the pseudo-extended MCMC method as a simple approach for improving the mixing of the MCMC sampler for multi-modal posterior distributions. The pseudo-extended method augments the state-space of the posterior using pseudo-samples as auxiliary variables. On the extended space, the modes of the posterior are connected, which allows the MCMC sampler to easily move between well-separated posterior modes. We demonstrate that the pseudo-extended approach delivers improved MCMC sampling over the Hamiltonian Monte Carlo algorithm on multi-modal posteriors, including Boltzmann machines and models with sparsity-inducing priors.
引用
收藏
页数:11
相关论文
共 31 条
  • [1] Particle Markov chain Monte Carlo methods
    Andrieu, Christophe
    Doucet, Arnaud
    Holenstein, Roman
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 : 269 - 342
  • [2] THE PSEUDO-MARGINAL APPROACH FOR EFFICIENT MONTE CARLO COMPUTATIONS
    Andrieu, Christophe
    Roberts, Gareth O.
    [J]. ANNALS OF STATISTICS, 2009, 37 (02) : 697 - 725
  • [3] [Anonymous], 2010, Proceedings of the International Conference on Machine Learning ICML'10
  • [4] [Anonymous], ARXIV160105633
  • [5] Beaumont MA, 2003, GENETICS, V164, P1139
  • [6] BISHOP C. M., 2006, Pattern recognition and machine learning, DOI [DOI 10.1117/1.2819119, 10.1007/978-0-387-45528-0]
  • [7] Brooks S, 2011, CH CRC HANDB MOD STA, pXIX
  • [8] Estimating Bayes factors via thermodynamic integration and population MCMC
    Calderhead, Ben
    Girolami, Mark
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (12) : 4028 - 4045
  • [9] Stan: A Probabilistic Programming Language
    Carpenter, Bob
    Gelman, Andrew
    Hoffman, Matthew D.
    Lee, Daniel
    Goodrich, Ben
    Betancourt, Michael
    Brubaker, Marcus A.
    Guo, Jiqiang
    Li, Peter
    Riddell, Allen
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2017, 76 (01): : 1 - 29
  • [10] The horseshoe estimator for sparse signals
    Carvalho, Carlos M.
    Polson, Nicholas G.
    Scott, James G.
    [J]. BIOMETRIKA, 2010, 97 (02) : 465 - 480