Cellular Responses to Patterned Poly(acrylic acid) Brushes

被引:42
作者
Chiang, Ethan N. [2 ]
Dong, Rong [2 ]
Ober, Christopher K. [1 ]
Baird, Barbara A. [2 ]
机构
[1] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Chem & Chem Biol, Baker Labs, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
POLYMER BRUSHES; IGE RECEPTORS; ACRYLIC-ACID; SURFACES; PROTEINS; BINDING; INVADOPODIA; GLYCOL); GROWTH;
D O I
10.1021/la200093e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We use patterned poly(acrylic acid) (PAA) polymer brushes to explore the effects of surface chemistry and topography on cell surface interactions. Most past studies of surface topography effects on cell adhesion have focused on patterned feature sizes that are larger than the dimensions of a cell, and PAA brushes have been characterized as cell repellent. Here we report cell adhesion studies for RBL mast cells incubated on PAA brush surfaces patterned with a variety of different feature sizes. We find that when patterned at subcellular dimensions on silicon surfaces, PAA brushes that are 30 or 15 nm thick facilitate cell adhesion. This appears to be mediated by fibronectin, which is secreted by the cells, adsorbing to the brushes and then engaging cell surface integrins. The result is detectable accumulation of plasma membrane within the brushes, and this involves cytoskeletal remodeling at the cell surface interface. By decreasing brush thickness, we find that PAA can be 'tuned' to promote cell adhesion with down-modulated membrane accumulation. We exemplify the utility of patterned PAA brush arrays for spatially controlling the activation of cells by modifying brushes with ligands that specifically engage IgE bound to high-affinity receptors on mast cells.
引用
收藏
页码:7016 / 7023
页数:8
相关论文
共 50 条
[41]   Interaction of aerosil nanoparticles with networks of polyacrylamide, poly(acrylic acid), and poly(methacrylic acid) hydrogels [J].
T. V. Terziyan ;
A. P. Safronov ;
Yu. G. Belous .
Polymer Science Series A, 2015, 57 :200-208
[42]   Polymer Brushes as Functional, Patterned Surfaces for Nanobiotechnology [J].
Welch, M. Elizabeth ;
Xu, Youyong ;
Chen, Hongjun ;
Smith, Norah ;
Tague, Michele E. ;
Abruna, Hector D. ;
Baird, Barbara ;
Ober, Christopher K. .
JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, 2012, 25 (01) :53-56
[43]   Antimicrobial activity of poly(acrylic acid) block copolymers [J].
Gratzl, Guenther ;
Paulik, Christian ;
Hild, Sabine ;
Guggenbichler, Josef P. ;
Lackner, Maximilian .
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2014, 38 :94-100
[44]   Electroactive hydrogels based on poly(acrylic acid) and polypyrrole [J].
M. A. Smirnov ;
N. V. Bobrova ;
I. Yu. Dmitriev ;
V. Bukolšek ;
G. K. Elyashevich .
Polymer Science Series A, 2011, 53 :67-74
[45]   Surface modification of glass beads with poly(acrylic acid) [J].
Zengin, H. ;
Hu, B. ;
Siddiqui, J. A. ;
Ottenbrite, R. M. .
POLYMERS FOR ADVANCED TECHNOLOGIES, 2006, 17 (05) :372-378
[46]   Shear Viscosity of Poly (Acrylamide/Acrylic Acid) Solutions [J].
Riahinezhad, Marzieh ;
McManus, Neil ;
Penlidis, Alexander .
MACROMOLECULAR SYMPOSIA, 2016, 360 (01) :179-184
[47]   Complexation behavior of poly(acrylic acid) and lanthanide ions [J].
Qi, Xiaocun ;
Wang, Zhiliang ;
Ma, Songmei ;
Wu, Lianjia ;
Yang, Shuguang ;
Xu, Jian .
POLYMER, 2014, 55 (05) :1183-1189
[48]   Modification of polyester fibers by grafting with poly(acrylic acid) [J].
Buchenska, J .
JOURNAL OF APPLIED POLYMER SCIENCE, 1997, 65 (05) :967-977
[49]   Preparation and characterization of poly(acrylic acid)-based nanoparticles [J].
Molnar, Reka Melinda ;
Bodnar, Magdolna ;
Hartmann, John F. ;
Janos Borbely .
COLLOID AND POLYMER SCIENCE, 2009, 287 (06) :739-744
[50]   Characterization and Swelling Properties of Copolymer Poly(N, N-dimethyl acrylamide -co-acrylic acid) and Homopolymer Poly(acrylic acid) [J].
Nakan, Ulantay ;
Tolkyn, Balgyn ;
Adikanova, D. B. ;
Negim, El-Sayed ;
Yeligbayeva, G. Zh ;
Seilkhanov, T. M. ;
Kenzhebayeva, B. A. ;
Abdiyev, K. Zh .
EGYPTIAN JOURNAL OF CHEMISTRY, 2022, 65 (04) :767-773