Adaptive boundary element methods for some first kind integral equations

被引:45
作者
Carstensen, C [1 ]
Stephan, EP [1 ]
机构
[1] UNIV HANNOVER,INST ANGEW MATH,D-30167 HANNOVER,GERMANY
关键词
adaptive boundary element method; a posteriori error estimate;
D O I
10.1137/S0036142993253503
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present an adaptive boundary element method for the boundary integral equations of the first kind concerning the Dirichlet problem and the Neumann problem for the Laplacian in a two-dimensional Lipschitz domain. For the h-version of the finite element Galerkin discretization of the single layer potential and the hypersingular operator, we derive a posteriori error estimates which guarantee a given bound for the error in the energy norm (up to a multiplicative constant). Following Eriksson and Johnson this yields adaptive algorithms steering the mesh refinement. Numerical examples confirm that our adaptive algorithms yield automatically the expected convergence rate.
引用
收藏
页码:2166 / 2183
页数:18
相关论文
共 26 条
  • [1] [Anonymous], BANACH CTR PUBLICATI
  • [2] ON ADAPTIVE FINITE-ELEMENT METHODS FOR FREDHOLM INTEGRAL-EQUATIONS OF THE 2ND KIND[J]. ASADZADEH, M;ERIKSSON, K. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994(03)
  • [3] A FEEDBACK FINITE-ELEMENT METHOD WITH A POSTERIORI ERROR ESTIMATION .1. THE FINITE-ELEMENT METHOD AND SOME BASIC PROPERTIES OF THE A POSTERIORI ERROR ESTIMATOR[J]. BABUSKA, I;MILLER, A. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1987(01)
  • [4] Bergh J., 1976, INTERPOLATION SPACES
  • [5] AN ADAPTED BOUNDARY ELEMENT METHOD FOR THE DIRICHLET PROBLEM IN POLYGONAL DOMAINS[J]. BOURLARD, M;NICAISE, S;PAQUET, L. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991(03)
  • [6] CARSTENSEN C, 1995, MATH COMPUT, V64, P483, DOI 10.1090/S0025-5718-1995-1277764-7
  • [7] THE NORMAL DERIVATIVE OF THE DOUBLE-LAYER POTENTIAL ON POLYGONS AND GALERKIN APPROXIMATION[J]. COSTABEL, M;STEPHAN, E. APPLICABLE ANALYSIS, 1983(03)
  • [8] BOUNDARY INTEGRAL-OPERATORS ON LIPSCHITZ-DOMAINS - ELEMENTARY RESULTS[J]. COSTABEL, M. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988(03)
  • [9] ERIKSSON K, 1988, MATH COMPUT, V50, P361, DOI 10.1090/S0025-5718-1988-0929542-X
  • [10] ADAPTIVE FINITE-ELEMENT METHODS FOR PARABOLIC PROBLEMS .1. A LINEAR-MODEL PROBLEM[J]. ERIKSSON, K;JOHNSON, C. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991(01)