Adaptive boundary element methods for some first kind integral equations

被引:45
作者
Carstensen, C [1 ]
Stephan, EP [1 ]
机构
[1] UNIV HANNOVER,INST ANGEW MATH,D-30167 HANNOVER,GERMANY
关键词
adaptive boundary element method; a posteriori error estimate;
D O I
10.1137/S0036142993253503
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present an adaptive boundary element method for the boundary integral equations of the first kind concerning the Dirichlet problem and the Neumann problem for the Laplacian in a two-dimensional Lipschitz domain. For the h-version of the finite element Galerkin discretization of the single layer potential and the hypersingular operator, we derive a posteriori error estimates which guarantee a given bound for the error in the energy norm (up to a multiplicative constant). Following Eriksson and Johnson this yields adaptive algorithms steering the mesh refinement. Numerical examples confirm that our adaptive algorithms yield automatically the expected convergence rate.
引用
收藏
页码:2166 / 2183
页数:18
相关论文
共 26 条
[1]  
[Anonymous], BANACH CTR PUBLICATI
[2]   ON ADAPTIVE FINITE-ELEMENT METHODS FOR FREDHOLM INTEGRAL-EQUATIONS OF THE 2ND KIND [J].
ASADZADEH, M ;
ERIKSSON, K .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1994, 31 (03) :831-855
[3]   A FEEDBACK FINITE-ELEMENT METHOD WITH A POSTERIORI ERROR ESTIMATION .1. THE FINITE-ELEMENT METHOD AND SOME BASIC PROPERTIES OF THE A POSTERIORI ERROR ESTIMATOR [J].
BABUSKA, I ;
MILLER, A .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1987, 61 (01) :1-40
[4]  
Bergh J., 1976, INTERPOLATION SPACES
[5]   AN ADAPTED BOUNDARY ELEMENT METHOD FOR THE DIRICHLET PROBLEM IN POLYGONAL DOMAINS [J].
BOURLARD, M ;
NICAISE, S ;
PAQUET, L .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (03) :728-743
[6]  
CARSTENSEN C, 1995, MATH COMPUT, V64, P483, DOI 10.1090/S0025-5718-1995-1277764-7
[7]   THE NORMAL DERIVATIVE OF THE DOUBLE-LAYER POTENTIAL ON POLYGONS AND GALERKIN APPROXIMATION [J].
COSTABEL, M ;
STEPHAN, E .
APPLICABLE ANALYSIS, 1983, 16 (03) :205-228
[8]   BOUNDARY INTEGRAL-OPERATORS ON LIPSCHITZ-DOMAINS - ELEMENTARY RESULTS [J].
COSTABEL, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988, 19 (03) :613-626
[9]  
ERIKSSON K, 1988, MATH COMPUT, V50, P361, DOI 10.1090/S0025-5718-1988-0929542-X
[10]   ADAPTIVE FINITE-ELEMENT METHODS FOR PARABOLIC PROBLEMS .1. A LINEAR-MODEL PROBLEM [J].
ERIKSSON, K ;
JOHNSON, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (01) :43-77