Analytical solutions to the fractional Lakshmanan-Porsezian-Daniel model

被引:17
作者
Yepez-Martinez, H. [1 ]
Rezazadeh, Hadi [2 ]
Inc, Mustafa [3 ,4 ,5 ]
Akinlar, Mehmet Ali [6 ]
Gomez-Aguilar, J. F. [7 ]
机构
[1] Univ Autonoma Ciudad Mexico, Prolongac San Isidro 151, Mexico City 09790, DF, Mexico
[2] Amol Univ Special Modern Technol, Fac Engn Technol, Amol, Iran
[3] Biruni Univ, Dept Comp Engn, Istanbul, Turkey
[4] Firat Univ, Sience Fac, Dept Math, TR-23119 Elazig, Turkey
[5] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[6] Bandirma Onyedi Eylul Univ, Fac Engn & Nat Sci, Engn Sci Dept, TR-10200 Balikesir, Turkey
[7] Tecnol Nacl Mexico, CONACyT, CENIDET, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
关键词
Lakshmanan-Porsezian-Daniel model; Jacobi elliptic optical solitons; Local fractional derivative; OPTICAL SOLITONS; LAW NONLINEARITY; EQUATION; DISPERSION;
D O I
10.1007/s11082-021-03378-w
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new local fractional-order derivative operator is introduced and the Lakshmanan-Porsezian-Daniel (LPD) model is interpreted via this operator. New analytical solutions to the LPD equation is presented by Jacobi elliptic functions and an anzatz method. The complex-valued LPD equation includes a nonlinear term which is considered from three different cases: Kerr, parabolic and anti-cubic law of nonlinearities. For each case, dark, bright, singular optical soliton solutions related with optical fibers are presented. Simulations representing behavior of these solutions for different parameter values are provided.
引用
收藏
页数:41
相关论文
共 56 条
[1]   On conformable fractional calculus [J].
Abdeljawad, Thabet .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 :57-66
[2]   Soliton solutions to the Boussinesq equation through sine-Gordon method and Kudryashov method [J].
Akbar, M. Ali ;
Akinyemi, Lanre ;
Yao, Shao-Wen ;
Jhangeer, Adil ;
Rezazadeh, Hadi ;
Khater, Mostafa M. A. ;
Ahmad, Hijaz ;
Inc, Mustafa .
RESULTS IN PHYSICS, 2021, 25
[3]   Analytical and approximate solutions of nonlinear Schrodinger equation with higher dimension in the anomalous dispersion regime [J].
Akinyemi, Lanre ;
Senol, Mehmet ;
Osman, M. S. .
JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2022, 7 (02) :143-154
[4]   Two improved techniques for the perturbed nonlinear Biswas-Milovic equation and its optical solitons [J].
Akinyemi, Lanre .
OPTIK, 2021, 243
[5]   The bright and singular solitons of (2+1)-dimensional nonlinear Schrodinger equation with spatio-temporal dispersions [J].
Akinyemi, Lanre ;
Hosseini, Kamyar ;
Salahshour, Soheil .
OPTIK, 2021, 242
[6]   Nonlinear dispersion in parabolic law medium and its optical solitons [J].
Akinyemi, Lanre ;
Rezazadeh, Hadi ;
Yao, Shao-Wen ;
Akbar, M. Ali ;
Khater, Mostafa M. A. ;
Jhangeer, Adil ;
Inc, Mustafa ;
Ahmad, Hijaz .
RESULTS IN PHYSICS, 2021, 26
[7]   Optical solitons for Lakshmanan-Porsezian-Daniel equation with Kerr law non-linearity using improved tan(ψ(η)/2)-expansion technique [J].
Akram, Ghazala ;
Sadaf, Maasoomah ;
Dawood, Mirfa ;
Baleanu, Dumitru .
RESULTS IN PHYSICS, 2021, 29
[8]   A remark on local fractional calculus and ordinary derivatives [J].
Almeida, Ricardo ;
Guzowska, Malgorzata ;
Odzijewicz, Tatiana .
OPEN MATHEMATICS, 2016, 14 :1122-1124
[9]   Optical solitons in birefringent fibers for Lakshmanan-Porsezian-Daniel model using exp(-φ(ξ))-expansion method [J].
Arshed, Saima ;
Biswas, Anjan ;
Majid, Fayequa B. ;
Zhou, Qin ;
Moshokoa, Seithuti P. ;
Belic, Milivoj .
OPTIK, 2018, 170 :555-560
[10]   On optical solitons of the Schrodinger-Hirota equation with power law nonlinearity in optical fibers [J].
Aslan, Ebru Cavlak ;
Tchier, Fairouz ;
Inc, Mustafa .
SUPERLATTICES AND MICROSTRUCTURES, 2017, 105 :48-55