A homotopy analysis method for limit cycle of the van der Pol oscillator with delayed amplitude limiting

被引:12
作者
Eigoli, Ali Kamali [1 ]
Khodabakhsh, Mohammad [2 ]
机构
[1] Islamic Azad Univ, Takestan Branch, Dept Mech Engn, Takestan, Iran
[2] Sharif Univ Technol, Dept Mech Engn, Tehran 113659567, Iran
关键词
van der Pol oscillator; Delayed amplitude limiting; Limit cycle; Homotopy analysis method; EQUATIONS;
D O I
10.1016/j.amc.2011.04.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, a powerful analytical method, called Liao's homotopy analysis method is used to study the limit cycle of a two-dimensional nonlinear dynamical system, namely the van der Pol oscillator with delayed amplitude limiting. It is shown that the solutions are valid for a wide range of variation of the system parameters. Comparison of the obtained solutions with those achieved by numerical solutions and by other perturbation techniques shows that the utilized method is effective and convenient to solve this type of problems with the desired order of approximation. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:9404 / 9411
页数:8
相关论文
共 15 条
[1]   Parametric excitation for forcing van der Pol oscillator [J].
Abd El-Latif, GM .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 147 (01) :255-265
[2]   Uniformly valid solution of limit cycle of the Duffing-van der Pol equation [J].
Chen, Y. M. ;
Liu, J. K. .
MECHANICS RESEARCH COMMUNICATIONS, 2009, 36 (07) :845-850
[3]   A study of homotopy analysis method for limit cycle of van der Pol equation [J].
Chen, Y. M. ;
Liu, J. K. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (05) :1816-1821
[4]   NORMALIZED EQUATIONS OF REGENERATIVE OSCILLATOR-NOISE PHASE-LOCKING + PULLING [J].
GOLAY, MJE .
PROCEEDINGS OF THE IEEE, 1964, 52 (11) :1311-&
[5]   Analysis of modified Van der Pol's oscillator using He's parameter-expanding methods [J].
Kimiaeifar, A. ;
Saidi, A. R. ;
Sohouli, A. R. ;
Ganji, D. D. .
CURRENT APPLIED PHYSICS, 2010, 10 (01) :279-283
[6]   Dynamics of two delay coupled van der Pol oscillators [J].
Li, Xinye ;
Ji, J. C. ;
Hansen, Colin H. .
MECHANICS RESEARCH COMMUNICATIONS, 2006, 33 (05) :614-627
[7]  
Liao S., 2003, PERTURBATION INTRO H
[8]   An analytic approximate approach for free oscillations of self-excited systems [J].
Liao, SJ .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2004, 39 (02) :271-280
[9]   An explicit analytic solution to the Thomas-Fermi equation [J].
Liao, SJ .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 144 (2-3) :495-506
[10]  
LIAO SJ, 1992, J APPL MECH, V14, P1173