Quantitative Characterization of Vertically Aligned Multi-Walled Carbon Nanotube Arrays Using Small Angle X-Ray Scattering

被引:16
作者
Das, Narayan Ch [1 ,2 ]
Yang, Kaikun [1 ]
Liu, Yayong [1 ]
Sokol, Paul E. [2 ,3 ]
Wang, Zhigang [4 ]
Wang, Howard [1 ]
机构
[1] SUNY Binghamton, Dept Mech Engn, Binghamton, NY 13902 USA
[2] Indiana Univ Ctr Explorat Energy & Matter, Bloomington, IN 47408 USA
[3] Indiana Univ, Dept Phys, Bloomington, IN 47408 USA
[4] Chinese Acad Sci, Inst Chem, Beijing Natl Lab Mol Sci, Beijing 100190, Peoples R China
基金
美国国家科学基金会;
关键词
Small Angle X-ray Scattering; Carbon Nanotube Arrays; Alignment; CHEMICAL-VAPOR-DEPOSITION; FIELD-EMISSION; RAPID GROWTH; FILMS; MORPHOLOGY; NUCLEATION; FIBERS;
D O I
10.1166/jnn.2011.4110
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We have used small angle X-ray scattering (SAXS) to quantitatively characterize the morphology of vertically aligned (VA) multiwall carbon nanotube (MWCNT) arrays. We examined the extent of alignment of MWCNTs in terms of order parameter by analyzing SAXS intensity as a function of azimuthal angle. The SAXS measurements at different heights of CNT arrays from the substrate reveal two distinct morphologies and increasing alignment. We are able to quantitatively characterize a real variation in CNT diameters of the VA-MWCNTs through model fitting of the SAXS spectra. It found that the average CNT diameter increases with increasing distance from the substrate.
引用
收藏
页码:4995 / 5000
页数:6
相关论文
共 44 条
[1]  
ALEXANDER LE, 1969, XRAY DIFFRACTION MET, P262
[2]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[3]   Collective Mechanism for the Evolution and Self-Termination of Vertically Aligned Carbon Nanotube Growth [J].
Bedewy, Mostafa ;
Meshot, Eric R. ;
Guo, Haicheng ;
Verploegen, Eric A. ;
Lu, Wei ;
Hart, A. John .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (48) :20576-20582
[4]   Controlling the morphology of carbon nanotnbe films by varying the areal density of catalyst nanoclusters using block-copolymer micellar thin films [J].
Bennett, Ryan D. ;
Hart, Anastasios J. ;
Cohen, Robert E. .
ADVANCED MATERIALS, 2006, 18 (17) :2274-+
[5]   Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition [J].
Bower, C ;
Zhou, O ;
Zhu, W ;
Werder, DJ ;
Jin, SH .
APPLIED PHYSICS LETTERS, 2000, 77 (17) :2767-2769
[6]   Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition [J].
Chhowalla, M ;
Teo, KBK ;
Ducati, C ;
Rupesinghe, NL ;
Amaratunga, GAJ ;
Ferrari, AC ;
Roy, D ;
Robertson, J ;
Milne, WI .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (10) :5308-5317
[7]   Growth behavior of carbon nanotubes on multilayered metal catalyst film in chemical vapor deposition [J].
Cui, H ;
Eres, G ;
Howe, JY ;
Puretkzy, A ;
Varela, M ;
Geohegan, DB ;
Lowndes, DH .
CHEMICAL PHYSICS LETTERS, 2003, 374 (3-4) :222-228
[8]   A CARBON NANOTUBE FIELD-EMISSION ELECTRON SOURCE [J].
DEHEER, WA ;
CHATELAIN, A ;
UGARTE, D .
SCIENCE, 1995, 270 (5239) :1179-1180
[9]   Multiwalled carbon nanotubes by chemical vapor deposition using multilayered metal catalysts [J].
Delzeit, L ;
Nguyen, CV ;
Chen, B ;
Stevens, R ;
Cassell, A ;
Han, J ;
Meyyappan, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (22) :5629-5635
[10]  
Dresselhaus M.S., 2001, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications