Characterization of L-arabinose/D-galactose 1-dehydrogenase from Thermotoga maritima and its application in galactonate production

被引:0
作者
Xue, Mengke [1 ]
Feng, Sizhong [1 ]
Xie, Fang [1 ]
Zhao, Hongyang [1 ]
Xue, Yemin [1 ]
机构
[1] Nanjing Normal Univ, Sch Food Sci & Pharmaceut Engn, Xuelin Rd 2,Xianlin St, Nanjing 210023, Jiangsu, Peoples R China
关键词
D-galactonate; D-galactose; L-arabinose; 1-dehydrogenase; Thermotoga maritima; DEHYDROGENASE; PATHWAY; ACIDS;
D O I
10.1007/s11274-022-03406-1
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The first hyperthermophilic L-arabinose/D-galactose 1-dehydrogenase (TmAraDH) from Thermotoga maritima was heterologously purified from Escherichia coli. It belongs to the Gfo/Idh/MocA protein family, prefers NAD(+)/NADP(+) as a cofactor. The purified TmAraDH exhibited maximum activity toward L-arabinose at 75 degrees C and pH 8.0, and retained 63.7% of its activity after 24 h at 60 degrees C, and over 60% of its activity after holding a pH ranging from 7.0 to 9.0 for 1 h. Among all tested substrates, TmAraDH exclusively catalyzed the NAD(P)(+)-dependent oxidation of L-arabinose, D-galactose and D-fucose. The catalytic efficiency (k(cat)/K-m) towards L-arabinose and D-galactose was 123.85, 179.26 min(-1) mM(-1) for NAD(+), and 56.06, 18.19 min(-1) mM(-1) for NADP(+), respectively. TmAraDH exhibited complete oxidative conversion in 12 h at 70 degrees C to D-galactonate with 5 mM D-galactose. Modelling provides structural insights into the cofactor and substrate recognition specificity. Our results suggest that TmAraDH have great potential for the conversion of L-arabinose and D-galactose to L-arabonate and D-galactonate.
引用
收藏
页数:14
相关论文
共 27 条
[1]   L-Arabinose/D-galactose 1-dehydrogenase of Rhizobium leguminosarum bv. trifolii characterised and applied for bioconversion of L-arabinose to L-arabonate with Saccharomyces cerevisiae [J].
Aro-Karkkainen, Niina ;
Toivari, Mervi ;
Maaheimo, Hannu ;
Ylilauri, Mikko ;
Pentikainen, Olli T. ;
Andberg, Martina ;
Oja, Merja ;
Penttila, Merja ;
Wiebe, Marilyn G. ;
Ruohonen, Laura ;
Koivula, Anu .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2014, 98 (23) :9653-9665
[2]   Extreme thermophiles as emerging metabolic engineering platforms [J].
Crosby, James R. ;
Laemthong, Tunyaboon ;
Lewis, April M. ;
Straub, Christopher T. ;
Adams, Michael W. W. ;
Kelly, Robert M. .
CURRENT OPINION IN BIOTECHNOLOGY, 2019, 59 :55-64
[3]   Gluconic acid production by Aspergillus terreus [J].
Dowdells, C. ;
Jones, R. L. ;
Mattey, M. ;
Bencina, M. ;
Legisa, M. ;
Mousdale, D. M. .
LETTERS IN APPLIED MICROBIOLOGY, 2010, 51 (03) :252-257
[4]  
Hammond J B, 1988, Methods Mol Biol, V3, P25, DOI 10.1385/0-89603-126-8:25
[5]   The Complete Genome Sequence of Haloferax volcanii DS2, a Model Archaeon [J].
Hartman, Amber L. ;
Norais, Cedric ;
Badger, Jonathan H. ;
Delmas, Stephane ;
Haldenby, Sam ;
Madupu, Ramana ;
Robinson, Jeffrey ;
Khouri, Hoda ;
Ren, Qinghu ;
Lowe, Todd M. ;
Maupin-Furlow, Julie ;
Pohlschroder, Mecky ;
Daniels, Charles ;
Pfeiffer, Friedhelm ;
Allers, Thorsten ;
Eisen, Jonathan A. .
PLOS ONE, 2010, 5 (03)
[6]   L-Arabinose degradation pathway in the haloarchaeon Haloferax volcanii involves a novel type of L-arabinose dehydrogenase [J].
Johnsen, Ulrike ;
Sutter, Jan-Moritz ;
Zaiss, Henning ;
Schoenheit, Peter .
EXTREMOPHILES, 2013, 17 (06) :897-909
[7]  
Kallnik V, 2011, APPL MICROBIOL BIOT, V90, P1285, DOI 10.1007/s00253-011-3187-5
[8]  
Kim GS., 2010, PUB NO US, V4774, pA1
[10]   Valorization of Gelidium amansii for dual production of D-galactonic acid and 5-hydroxymethyl-2-furancarboxylic acid by chemo-biological approach [J].
Liu, Peng ;
Xie, Jiaxiao ;
Tan, Huanghong ;
Zhou, Feng ;
Zou, Lihua ;
Ouyang, Jia .
MICROBIAL CELL FACTORIES, 2020, 19 (01)