Anosov parameter values for the triple linkage and a physical system with a uniformly chaotic attractor

被引:52
作者
Hunt, TJ
MacKay, RS
机构
[1] Open Univ, Milton Keynes MK7 6AA, Bucks, England
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
关键词
D O I
10.1088/0951-7715/16/4/318
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
First, the free frictionless dynamics of the triple linkage of Thurston and Weeks is proved to be Anosov on each positive energy level for a non-empty open set of parameter values. Second, in the presence of weak friction and any smooth potential, an open set of physically implementable feedback control laws are found for which the system possesses a uniformly hyperbolic attracting submanifold.
引用
收藏
页码:1499 / 1510
页数:12
相关论文
共 19 条
[1]  
Ashcroft N. W., 1973, SOLID STATE PHYS
[2]   STATISTICAL PROPERTIES OF LORENTZ GAS WITH PERIODIC CONFIGURATION OF SCATTERERS [J].
BUNIMOVICH, LA ;
SINAI, YG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 78 (04) :479-497
[3]   Embedded surfaces with ergodic geodesic flows [J].
Burns, K ;
Donnay, VJ .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (07) :1509-1527
[4]  
Denker M., 1984, ERGOD THEOR DYN SYST, V4, P541
[5]   Consequences of contractible geodesics on surfaces [J].
Denvir, J ;
MacKay, RS .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (11) :4553-4568
[6]  
Do Carmo Manfredo P, 2016, Differential geometry of curves & surfaces, Vsecond
[7]   On decay of correlations in Anosov flows [J].
Dolgopyat, D .
ANNALS OF MATHEMATICS, 1998, 147 (02) :357-390
[8]  
FENICHEL N, 1971, INDIANA U MATH J, V21, P193
[9]  
Gray A., 1993, MODERN DIFFERENTIAL
[10]  
HUNT TJ, 2000, THESIS CAMBRIDGE U