McSplicer: a probabilistic model for estimating splice site usage from RNA-seq data

被引:5
作者
Alqassem, Israa [1 ]
Sonthalia, Yash [2 ,3 ]
Klitzke-Feser, Erika [1 ]
Shim, Heejung [4 ,5 ]
Canzar, Stefan [1 ]
机构
[1] Ludwig Maximilians Univ Munchen, Gene Ctr, D-81377 Munich, Germany
[2] Purdue Univ, Dept Comp Sci, W Lafayette, IN 47907 USA
[3] Google, Kirkland, WA 98033 USA
[4] Univ Melbourne, Melbourne Integrat Genom, Parkville, Vic 3010, Australia
[5] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
关键词
QUANTIFICATION; IDENTIFICATION; TRANSCRIPTOME; EVENTS;
D O I
10.1093/bioinformatics/btab050
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Alternative splicing removes intronic sequences from pre-mRNAs in alternative ways to produce different forms (isoforms) of mature mRNA. The composition of expressed transcripts gives specific functionalities to cells in a particular condition or developmental stage. In addition, a large fraction of human disease mutations affect splicing and lead to aberrant mRNA and protein products. Current methods that interrogate the transcriptome based on RNA-seq either suffer from short-read length when trying to infer full-length transcripts, or are restricted to predefined units of alternative splicing that they quantify from local read evidence. Results: Instead of attempting to quantify individual outcomes of the splicing process such as local splicing events or full-length transcripts, we propose to quantify alternative splicing using a simplified probabilistic model of the underlying splicing process. Our model is based on the usage of individual splice sites and can generate arbitrarily complex types of splicing patterns. In our implementation, McSplicer, we estimate the parameters of our model using all read data at once and we demonstrate in our experiments that this yields more accurate estimates compared to competing methods. Our model is able to describe multiple effects of splicing mutations using few, easy to interpret parameters, as we illustrate in an experiment on RNA-seq data from autism spectrum disorder patients.
引用
收藏
页码:2004 / 2011
页数:8
相关论文
共 47 条
[1]   Splicing mutations in human genetic disorders: examples, detection, and confirmation [J].
Abramowicz, Anna ;
Gos, Monika .
JOURNAL OF APPLIED GENETICS, 2018, 59 (03) :253-268
[2]   Leveraging transcript quantification for fast computation of alternative splicing profiles [J].
Alamancos, Gael P. ;
Pages, Amadis ;
Trincado, Juan L. ;
Bellora, Nicolas ;
Eyras, Eduardo .
RNA, 2015, 21 (09) :1521-1531
[3]   Common intervals and sorting by reversals: a marriage of necessity [J].
Bergeron, A ;
Heber, S ;
Stoye, J .
BIOINFORMATICS, 2002, 18 :S54-S63
[4]   Widespread intron retention in mammals functionally tunes transcriptomes [J].
Braunschweig, Ulrich ;
Barbosa-Morais, Nuno L. ;
Pan, Qun ;
Nachman, Emil N. ;
Alipanahi, Babak ;
Gonatopoulos-Pournatzis, Thomas ;
Frey, Brendan ;
Irimia, Manuel ;
Blencowe, Benjamin J. .
GENOME RESEARCH, 2014, 24 (11) :1774-1786
[5]   Near-optimal probabilistic RNA-seq quantification (vol 34, pg 525, 2016) [J].
Bray, Nicolas L. ;
Pimentel, Harold ;
Melsted, Pall ;
Pachter, Lior .
NATURE BIOTECHNOLOGY, 2016, 34 (08) :888-888
[6]   Conservation of an RNA regulatory map between Drosophila and mammals [J].
Brooks, Angela N. ;
Yang, Li ;
Duff, Michael O. ;
Hansen, Kasper D. ;
Park, Jung W. ;
Dudoit, Sandrine ;
Brenner, Steven E. ;
Graveley, Brenton R. .
GENOME RESEARCH, 2011, 21 (02) :193-202
[7]   CIDANE: comprehensive isoform discovery and abundance estimation [J].
Canzar, Stefan ;
Andreotti, Sandro ;
Weese, David ;
Reinert, Knut ;
Klau, Gunnar W. .
GENOME BIOLOGY, 2016, 17
[8]   ASGAL: aligning RNA-Seq data to a splicing graph to detect novel alternative splicing events [J].
Denti, Luca ;
Rizzi, Raffaella ;
Beretta, Stefano ;
Della Vedova, Gianluca ;
Previtali, Marco ;
Bonizzoni, Paola .
BMC BIOINFORMATICS, 2018, 19
[9]   STAR: ultrafast universal RNA-seq aligner [J].
Dobin, Alexander ;
Davis, Carrie A. ;
Schlesinger, Felix ;
Drenkow, Jorg ;
Zaleski, Chris ;
Jha, Sonali ;
Batut, Philippe ;
Chaisson, Mark ;
Gingeras, Thomas R. .
BIOINFORMATICS, 2013, 29 (01) :15-21
[10]   SplicePort - An interactive splice-site analysis tool [J].
Dogan, Rezarta Islamaj ;
Getoor, Lise ;
Wilbur, W. John ;
Mount, Stephen M. .
NUCLEIC ACIDS RESEARCH, 2007, 35 :W285-W291