Prediction of novel pluripotent proteins involved in reprogramming of male Germline stem cells (GSCs) into multipotent adult Germline stem cells (maGSCs) by network analysis

被引:7
作者
Guttula, Praveen Kumar [1 ]
Agarwal, Anushka [1 ]
Maharana, Usharani [1 ]
Gupta, Mukesh Kumar [1 ]
机构
[1] Natl Inst Technol, Dept Biotechnol & Med Engn, Gene Manipulat Lab, Rourkela 769008, India
关键词
GSCs; maGSCs; Galaxy; Pluripred; Cytoscape; MCODE; TRANSCRIPTION FACTOR; NAIVE PLURIPOTENCY; EXPRESSION; GENE; GENERATION;
D O I
10.1016/j.compbiolchem.2018.08.001
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Germline stem cells (GSCs) are known to transmit genetic information from parents to offspring. These GSCs can undergo reprogramming to transform themselves into pluripotent stem cells, called as Multipotent adult Germline stem cells (maGSCs). The mechanism of the reprogramming of GSCs to maGSCs is elusive. To investigate novel factors that may govern the process of reprogramming, the RNA-seq data of both GSCs and maGSCs were retrieved and subjected to Tuxedo protocol using Galaxy server. Total 1558 differentially expressed genes were identified from the analysis. Protein sequence in the FASTA format of all 1558 differentially expressed genes was retrieved and submitted to Pluripred web server to predict whether the proteins were pluripotent or not. A total of 232 proteins were predicted as pluripotent, and to identify the novel proteins, these were submitted to STRING database to obtain an interaction map. The obtained interaction map was submitted to Cytoscape, and various apps such as MCODE and Centiscape were used to identify the clusters and centrality measures between the nodes of the generated network. Five clusters were identified and ranked according to their score. Novel pluripotent proteins like cadherin related cdh5, cdh10 were predicted. Phox2b, Nrp2, Dll1, Shh, Gbx2, Nodal, Lefty1, Wnt7b, Pitx2, fgf4, Pou5f1, Nanog, Tet1, trim8, alx2, Dppa2, Prdm14,Sox11, Esrrb were predicted to be involved in the stem cell development. Dppa2, Sox11, Sox2, Bmp4, Shh, and Otp were predicted to be involved in positive regulation of the stem cell proliferation. Pathway analysis further revealed that signaling pathways such as Wnt, Jak-Stat and PI3K may play important role in the pluripotency of the maGSCs. Novel proteins involved in pluripotency, which were predicted by our findings, can be experimentally researched in future.
引用
收藏
页码:302 / 309
页数:8
相关论文
共 38 条
[1]   The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update [J].
Afgan, Enis ;
Baker, Dannon ;
van den Beek, Marius ;
Blankenberg, Daniel ;
Bouvier, Dave ;
Cech, Martin ;
Chilton, John ;
Clements, Dave ;
Coraor, Nate ;
Eberhard, Carl ;
Gruening, Bjoern ;
Guerler, Aysam ;
Hillman-Jackson, Jennifer ;
Von Kuster, Greg ;
Rasche, Eric ;
Soranzo, Nicola ;
Turaga, Nitesh ;
Taylor, James ;
Nekrutenko, Anton ;
Goecks, Jeremy .
NUCLEIC ACIDS RESEARCH, 2016, 44 (W1) :W3-W10
[2]   Mesenchymal to Epithelial Transition Mediated by CDHI Promotes Spontaneous Reprogramming of Male Germline Stem Cells to Pluripotency [J].
An, Junhui ;
Zheng, Yu ;
Dann, Christina Tenenhaus .
STEM CELL REPORTS, 2017, 8 (02) :446-459
[3]   Sox2+ Adult Stem and Progenitor Cells Are Important for Tissue Regeneration and Survival of Mice [J].
Arnold, Katrin ;
Sarkar, Abby ;
Yram, Mary Anna ;
Polo, Jose M. ;
Bronson, Rod ;
Sengupta, Sumitra ;
Seandel, Marco ;
Geijsen, Niels ;
Hochedlinger, Konrad .
CELL STEM CELL, 2011, 9 (04) :317-329
[4]   Core transcriptional regulatory circuitry in human embryonic stem cells [J].
Boyer, LA ;
Lee, TI ;
Cole, MF ;
Johnstone, SE ;
Levine, SS ;
Zucker, JR ;
Guenther, MG ;
Kumar, RM ;
Murray, HL ;
Jenner, RG ;
Gifford, DK ;
Melton, DA ;
Jaenisch, R ;
Young, RA .
CELL, 2005, 122 (06) :947-956
[5]   Zic2 is expressed in pluripotent cells in the blastocyst and adult brain expression overlaps with makers of neurogenesis [J].
Brown, Lucia ;
Brown, Stephen .
GENE EXPRESSION PATTERNS, 2009, 9 (01) :43-49
[6]   Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation [J].
Brownell, JE ;
Zhou, JX ;
Ranalli, T ;
Kobayashi, R ;
Edmondson, DG ;
Roth, SY ;
Allis, CD .
CELL, 1996, 84 (06) :843-851
[7]   The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants [J].
Cock, Peter J. A. ;
Fields, Christopher J. ;
Goto, Naohisa ;
Heuer, Michael L. ;
Rice, Peter M. .
NUCLEIC ACIDS RESEARCH, 2010, 38 (06) :1767-1771
[8]   PluriPred: A Web server for predicting proteins involved in pluripotent network [J].
Das Mandal, Sukhen ;
Saha, Sudipto .
JOURNAL OF BIOSCIENCES, 2016, 41 (04) :743-750
[9]   Tet1 Is Dispensable for Maintaining Pluripotency and Its Loss Is Compatible with Embryonic and Postnatal Development [J].
Dawlaty, Meelad M. ;
Ganz, Kibibi ;
Powell, Benjamin E. ;
Hu, Yueh-Chiang ;
Markoulaki, Styliani ;
Cheng, Albert W. ;
Gao, Qing ;
Kim, Jongpil ;
Choi, Sang-Woon ;
Page, David C. ;
Jaenisch, Rudolf .
CELL STEM CELL, 2011, 9 (02) :166-175
[10]   Seminal discoveries in regenerative medicine: contributions of the male germ line to understanding pluripotency [J].
Geijsen, Niels ;
Jones, D. Leanne .
HUMAN MOLECULAR GENETICS, 2008, 17 :R16-R22