Boundedness of families of canonically polarized manifolds: A higher dimensional analogue of Shafarevich's conjecture (vol 172, pg 1719, 2010)

被引:9
作者
Kovacs, Sandor J. [1 ]
Lieblich, Max [1 ]
机构
[1] Univ Washington, Seattle, WA 98195 USA
关键词
GENERAL TYPE; FUNCTION-FIELDS; VARIETIES; STACKS; CURVES; MODULI; THEOREM;
D O I
10.4007/annals.2010.172.1719
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the number of deformation types of canonically polarized manifolds over an arbitrary variety with proper singular locus is finite, and that this number is uniformly bounded in any finite type family of base varieties. As a corollary we show that a direct generalization of the geometric version of Shafarevich's original conjecture holds for infinitesimally rigid families of canonically polarized varieties.
引用
收藏
页码:585 / 617
页数:33
相关论文
共 48 条
  • [1] Compactifying the space of stable maps
    Abramovich, D
    Vistoli, A
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (01) : 27 - 75
  • [2] Tame stacks in positive characteristic
    Abramovich, Dan
    Olsson, Martin
    Vistoli, Angelo
    [J]. ANNALES DE L INSTITUT FOURIER, 2008, 58 (04) : 1057 - 1091
  • [3] *AESOP, FABLES
  • [4] [Anonymous], 2000, ERGEB MATH GRENZGEB
  • [5] [Anonymous], 1991, ENCY MATH SCI
  • [6] [Anonymous], 1996, Publications Mathematiques
  • [7] [Anonymous], AM J MATH
  • [8] [Anonymous], 1968, Izv. Akad. Nauk SSSR Ser. Mat
  • [9] [Anonymous], 1998, Cambridge Tracts in Mathematics
  • [10] [Anonymous], 1995, Ergeb. Math. Grenzgeb.