Bounds and extremal domains for Robin eigenvalues with negative boundary parameter

被引:42
作者
Antunes, Pedro R. S. [1 ]
Freitas, Pedro [1 ,2 ]
Krejcirik, David [3 ]
机构
[1] Univ Lisbon, Fac Ciencias, Grp Math Phys, Edificio C6, P-1749016 Lisbon, Portugal
[2] Univ Lisbon, Fac Human Kinet, Dept Math, Edificio C6, P-1749016 Lisbon, Portugal
[3] Acad Sci, Nucl Phys Inst, Dept Theoret Phys, Rez 25068, Czech Republic
关键词
Eigenvalue optimisation; Robin Laplacian; negative boundary parameter; Bareket's conjecture; MODIFIED BESSEL-FUNCTIONS; ISOPERIMETRIC INEQUALITY; PRINCIPAL EIGENVALUE; MONOTONICITY; DIRICHLET; LAPLACIAN; MEMBRANE;
D O I
10.1515/acv-2015-0045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present some new bounds for the first Robin eigenvalue with a negative boundary parameter. These include the constant volume problem, where the bounds are based on the shrinking coordinate method, and a proof that in the fixed perimeter case the disk maximises the first eigenvalue for all values of the parameter. This is in contrast with what happens in the constant area problem, where the disk is the maximiser only for small values of the boundary parameter. We also present sharp upper and lower bounds for the first eigenvalue of the ball and spherical shells. These results are complemented by the numerical optimisation of the first four and two eigenvalues in two and three dimensions, respectively, and an evaluation of the quality of the upper bounds obtained. We also study the bifurcations from the ball as the boundary parameter becomes large (negative).
引用
收藏
页码:357 / 379
页数:23
相关论文
共 36 条
[21]  
Girouard A, 2009, J DIFFER GEOM, V83, P637
[22]  
HENRY D., 2005, Perturbation of the Boundary in Boundary-Value Problems of Partial Differential Equations
[23]  
Kato T., 1966, PERTURBATION THEORY
[24]  
Kennedy J, 2009, P AM MATH SOC, V137, P627
[25]   A Rayleigh formulated minimal characteristic of the circle [J].
Krahn, E .
MATHEMATISCHE ANNALEN, 1925, 94 :97-100
[26]  
Krahn E., 1926, Acta Comm. Univ. Tartu (Dorpat) A, V9, P1
[27]   Multidimensional reaction diffusion equations with nonlinear boundary conditions [J].
Lacey, AA ;
Ockendon, JR ;
Sabina, J .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 58 (05) :1622-1647
[28]   On the principal eigenvalue of a Robin problem with a large parameter [J].
Levitin, Michael ;
Parnovski, Leonid .
MATHEMATISCHE NACHRICHTEN, 2008, 281 (02) :272-281
[29]  
Oudet É, 2004, ESAIM CONTR OPTIM CA, V10, P315, DOI 10.1051/cocv:2004011
[30]  
PAYNE L. E., 1961, Journal of Mathematical Analysis and Applications, V2, P210