Poly(vinylidene fluoride)-based hybrid gel polymer electrolytes for additive-free lithium sulfur batteries

被引:101
|
作者
Gao, Shu [1 ,2 ]
Wang, Kangli [1 ]
Wang, Ruxing [2 ]
Jiang, Mao [2 ]
Han, Jing [2 ]
Gu, Tiantian [2 ]
Cheng, Shijie [1 ]
Jiang, Kai [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Elect & Elect Engn, State Key Lab Adv Electromagnet Engn & Technol, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
LIQUID-METAL BATTERY; HIGH-CAPACITY; PERFORMANCE; GRAPHENE; MEMBRANE; SIO2; PVDF;
D O I
10.1039/c7ta05145j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The permeation of dissolved lithium polysulfides across the porous polyolefin-based commercial separator is a major hindrance for using lithium sulfur batteries (LSBs). In this work, the poly(vinylidene fluoride) (PVDF)-based gel polymer electrolyte (GPE) with a compact morphology to block polysulfide penetration is prepared using a simple solution-casting method, and the strategy of incorporating poly(ethylene oxide) and nano zirconium dioxide is applied to guarantee electrolyte uptake and Li+ mobility. Superior to the commercial separator with liquid electrolyte, the LSB assembled with additive-free GPE exhibits a high initial capacity of 1429 mA h g(-1), coulombic efficiency of 96% at 0.2C and improved rate performance. After 500 cycles at 1C, the LSB could still deliver a capacity of 847.2 mA h g(-1), with a low fading rate of 0.05%. The LSB with high sulfur loading (5.2 mg cm(-2)) could attain a high areal capacity of 4.6 mA h cm(-2). Results of scanning electron microscopy suggest that such a hybrid GPE could effectively protect the lithium anode from polysulfide corrosion. Therefore, this novel membrane of hybrid PVDF-based GPE provides a simple and effective method to establish high-performance LSBs.
引用
收藏
页码:17889 / 17895
页数:7
相关论文
共 50 条
  • [1] Electrochemically stable poly (vinylidene fluoride)-polyurethane polymer gel electrolytes with polar β-phase in lithium batteries
    Xue, Nanxiang
    Wang, Wei
    Chen, Zhuangxin
    Heng, Yue
    Yuan, Zidan
    Xu, Ruijie
    Lei, Caihong
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 907
  • [2] Composition and Structure Design of Poly(vinylidene fluoride)-Based Solid Polymer Electrolytes for Lithium Batteries
    Zhou, Shengyu
    Zhong, Shijie
    Dong, Yunfa
    Liu, Zhezhi
    Dong, Liwei
    Yuan, Botao
    Xie, Haodong
    Liu, Yuanpeng
    Qiao, Liang
    Han, Jiecai
    He, Weidong
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (20)
  • [3] A poly(vinylidene fluoride)-based gel electrolyte membrane for lithium batteries
    Appetecchi, GB
    Croce, F
    De Paolis, A
    Scrosati, B
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1999, 463 (02) : 248 - 252
  • [4] Effect of ionic liquid on the properties of poly(vinylidene fluoride)-based gel polymer electrolytes
    Dong, Zhen
    Zhang, Qilu
    Yu, Chuhong
    Peng, Jing
    Ma, Jun
    Ju, Xuecheng
    Zhai, Maolin
    IONICS, 2013, 19 (11) : 1587 - 1593
  • [5] A trilayer poly(vinylidene fluoride)/polyborate/poly(vinylidene fluoride) gel polymer electrolyte with good performance for lithium ion batteries
    Zhu, Yusong
    Xiao, Shiying
    Shi, Yi
    Yang, Yaqiong
    Wu, Yuping
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (26) : 7790 - 7797
  • [6] Preparation and characterization of gel polymer electrolyte based on porous poly(methyl methacrylate) and poly(vinylidene fluoride) films for lithium ion batteries
    Zhang, Hairong
    Xiong, Zhen
    Yuan, Ge
    Li, Bo
    Guo, Haijun
    Wang, Mengkun
    Chen, Xinde
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (09)
  • [7] Electrochemical characterization of poly(vinylidene fluoride-co-hexafluoro propylene) based electrospun gel polymer electrolytes incorporating moth temperature ionic liquids as green electrolytes for lithium batteries
    Raghavan, Prasanth
    Zhao, Xiaohui
    Choi, Hyunji
    Lim, Du-Hyun
    Kim, Jae-Kwang
    Matic, Aleksandar
    Jacobsson, Per
    Nah, Changwoon
    Ahn, Jou-Hyeon
    SOLID STATE IONICS, 2014, 262 : 77 - 82
  • [8] A Composite Gel Polymer Electrolyte with High Performance Based on Poly(Vinylidene Fluoride) and Polyborate for Lithium Ion Batteries
    Zhu, Yusong
    Xiao, Shiying
    Shi, Yi
    Yang, Yaqiong
    Hou, Yuyang
    Wu, Yuping
    ADVANCED ENERGY MATERIALS, 2014, 4 (01)
  • [9] In situ ceramic fillers of electrospun thermoplastic polyurethane/poly(vinylidene fluoride) based gel polymer electrolytes for Li-ion batteries
    Wu, Na
    Cao, Qi
    Wang, Xianyou
    Li, Sheng
    Li, Xiaoyun
    Deng, Huayang
    JOURNAL OF POWER SOURCES, 2011, 196 (22) : 9751 - 9756
  • [10] Impedance and lithium-7 NMR studies of polymer electrolytes based on poly(vinylidene fluoride)
    Croce, F
    Appetecchi, GB
    Slane, S
    Salomon, M
    Tavarez, M
    Arumugam, S
    Wang, Y
    Greenbaum, SG
    SOLID STATE IONICS, 1996, 86-8 : 307 - 312