The Decoding Toolbox (TDT): a versatile software package for multivariate analyses of functional imaging data

被引:308
作者
Hebart, Martin N. [1 ,2 ,3 ,4 ]
Goergen, Kai [2 ,3 ,5 ]
Haynes, John-Dylan [2 ,3 ,4 ]
机构
[1] Univ Med Ctr Hamburg Eppendorf, Dept Syst Neurosci, D-20251 Hamburg, Germany
[2] Charite, Bernstein Ctr Computat Neurosci, D-13353 Berlin, Germany
[3] Charite, Berlin Ctr Adv Neuroimaging, D-13353 Berlin, Germany
[4] Humboldt Univ, Berlin Sch Mind & Brain, D-10099 Berlin, Germany
[5] Tech Univ Berlin, Fachgebiet Neurotechnol, Berlin, Germany
关键词
multivariate pattern analysis; decoding; pattern classification; fMRI; representational similarity analysis; searchlight; VOXEL PATTERN-ANALYSIS; CLASSIFICATION; FMRI; INFORMATION; SELECTION; CORTEX; REPRESENTATIONS; RECOGNITION; REGRESSION; IDENTITY;
D O I
10.3389/fninf.2014.00088
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The multivariate analysis of brain signals has recently sparked a great amount of interest, yet accessible and versatile tools to carry out decoding analyses are scarce. Here we introduce The Decoding Toolbox (TDT) which represents a user-friendly, powerful and flexible package for multivariate analysis of functional brain imaging data. TDT is written in Matlab and equipped with an interface to the widely used brain data analysis package SPM. The toolbox allows running fast whole-brain analyses, region-of-interest analyses and searchlight analyses, using machine learning classifiers, pattern correlation analysis, or representational similarity analysis. It offers automatic creation and visualization of diverse cross-validation schemes, feature scaling, nested parameter selection, a variety of feature selection methods, multiclass capabilities, and pattern reconstruction from classifier weights. While basic users can implement a generic analysis in one line of code, advanced users can extend the toolbox to their needs or exploit the structure to combine it with external high-performance classification toolboxes. The toolbox comes with an example data set which can be used to try out the various analysis methods. Taken together, TDT offers a promising option for researchers who want to employ multivariate analyses of brain activity patterns.
引用
收藏
页数:18
相关论文
共 69 条
[1]   Searchlight-based multi-voxel pattern analysis of fMRI by cross-validated MANOVA [J].
Allefeld, Carsten ;
Haynes, John-Dylan .
NEUROIMAGE, 2014, 89 :345-357
[2]  
[Anonymous], 1998, FEATURE EXTRACTION C
[3]   Neural correlations, population coding and computation [J].
Averbeck, BB ;
Latham, PE ;
Pouget, A .
NATURE REVIEWS NEUROSCIENCE, 2006, 7 (05) :358-366
[4]   The Faces in Radiological Images: Fusiform Face Area Supports Radiological Expertise [J].
Bilalic, Merim ;
Grottenthaler, Thomas ;
Naegele, Thomas ;
Lindig, Tobias .
CEREBRAL CORTEX, 2016, 26 (03) :1004-1014
[5]   The non-invasive Berlin Brain-Computer Interface:: Fast acquisition of effective performance in untrained subjects [J].
Blankertz, Benjamin ;
Dornhege, Guido ;
Krauledat, Matthias ;
Mueller, Klaus-Robert ;
Curio, Gabriel .
NEUROIMAGE, 2007, 37 (02) :539-550
[6]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[7]   Parietal and early visual cortices encode working memory content across mental transformations [J].
Christophel, Thomas B. ;
Cichy, Radoslaw M. ;
Hebart, Martin N. ;
Haynes, John-Dylan .
NEUROIMAGE, 2015, 106 :198-206
[8]   Decoding complex flow-field patterns in visual working memory [J].
Christophel, Thomas B. ;
Haynes, John-Dylan .
NEUROIMAGE, 2014, 91 :43-51
[9]   Decoding the Contents of Visual Short-Term Memory from Human Visual and Parietal Cortex [J].
Christophel, Thomas B. ;
Hebart, Martin N. ;
Haynes, John-Dylan .
JOURNAL OF NEUROSCIENCE, 2012, 32 (38) :12983-12989
[10]   SUPPORT-VECTOR NETWORKS [J].
CORTES, C ;
VAPNIK, V .
MACHINE LEARNING, 1995, 20 (03) :273-297