Approaching 100% Selectivity at Low Potential on Ag for Electrochemical CO2 Reduction to CO Using a Surface Additive

被引:50
作者
Buckley, Aya K. [1 ,2 ,3 ]
Cheng, Tao [4 ,5 ,6 ]
Oh, Myoung Hwan [1 ,7 ]
Su, Gregory M. [8 ,9 ]
Garrison, Jennifer [1 ,2 ,3 ]
Utan, Sean W. [1 ,2 ,3 ]
Zhu, Chenhui [8 ]
Toste, F. Dean [1 ,2 ,3 ]
Goddard, William A., III [10 ,11 ]
Toma, Francesca M. [1 ,2 ]
机构
[1] Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[4] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Joint Int Res Lab Carbon Based Funct Mat & Device, Suzhou 215123, Jiangsu, Peoples R China
[5] CALTECH, Joint Ctr Artificial Photosynth, Pasadena, CA 91125 USA
[6] CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA
[7] Korea Inst Energy Technol, Dept Energy Technol, Naju 58322, South Korea
[8] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[9] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[10] CALTECH, Joint Ctr Artificial Photosynth & Mat, Pasadena, CA 91125 USA
[11] CALTECH, Proc Simulat Ctr, Pasadena, CA 91125 USA
关键词
electrochemical CO2 reduction; surface additives; interfaces; silver; molecular dynamics; ELECTROCATALYTIC REDUCTION; COPPER; MICROENVIRONMENTS; ELECTROREDUCTION; INSIGHTS;
D O I
10.1021/acscatal.1c00830
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report the discovery of a quaternary ammonium surface additive for CO2 reduction on Ag surfaces that changes the Faradaic efficiency for CO from 25% on Ag foil to 97%, while increasing the current density for CO production by a factor of 9 from 0.14 to 1.21 mA/cm(2) and reducing the current density for H-2 production by a factor of 440 from 0.44 to 0.001 mA/cm(2). Using ReaxFF reactive molecular dynamics, we find that the surface additive with the highest selectivity, dihexadecyldimethylammonium bromide, promotes substantial population of CO2 near the Ag surface along with sufficient H2O to activate the CO2. While a critical number of water molecules is required in the reduction of CO2 to CO, the trend in selectivity strongly correlates with the availability of CO2 molecules. We demonstrate that the ordering of the cationic modifiers plays a significant role around the active site, thus determining reaction selectivity. The dramatic improvement by addition of a simple surface additive suggests an additional strategy in electrocatalysis.
引用
收藏
页码:9034 / 9042
页数:9
相关论文
共 28 条
[1]   Electrocatalysis at Organic-Metal Interfaces: Identification of Structure-Reactivity Relationships for CO2 Reduction at Modified Cu Surfaces [J].
Buckley, Aya K. ;
Lee, Michelle ;
Cheng, Tao ;
Kazantsev, Roman V. ;
Larson, David M. ;
Goddard, William A., III ;
Toste, F. Dean ;
Toma, Francesca M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (18) :7355-7364
[2]   Dynamic Boundary Layer Simulation of Pulsed CO2 Electrolysis on a Copper Catalyst [J].
Bui, Justin C. ;
Kim, Chanyeon ;
Weber, Adam Z. ;
Bell, Alexis T. .
ACS ENERGY LETTERS, 2021, 6 (04) :1181-1188
[3]   Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes [J].
Chen, Xinyi ;
Chen, Junfeng ;
Alghoraibi, Nawal M. ;
Henckel, Danielle A. ;
Zhang, Ruixian ;
Nwabara, Uzoma O. ;
Madsen, Kenneth E. ;
Kenis, Paul J. A. ;
Zimmerman, Steven C. ;
Gewirth, Andrew A. .
NATURE CATALYSIS, 2021, 4 (01) :20-27
[4]   Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products [J].
Gao, Dunfeng ;
Aran-Ais, Rosa M. ;
Jeon, Hyo Sang ;
Roldan Cuenya, Beatriz .
NATURE CATALYSIS, 2019, 2 (03) :198-210
[5]   Using Microenvironments to Control Reactivity in CO2 Electrocatalysis [J].
Hahn, Christopher ;
Jaramillo, Thomas F. .
JOULE, 2020, 4 (02) :292-294
[6]   CO2 Reduction Selective for C≥2 Products on Polycrystalline Copper with N-Substituted Pyridinium Additives [J].
Han, Zhiji ;
Kortlever, Ruud ;
Chen, Hsiang-Yun ;
Peters, Jonas C. ;
Agapie, Theodor .
ACS CENTRAL SCIENCE, 2017, 3 (08) :853-859
[7]   Insights into the electrocatalytic reduction of CO2 on metallic silver surfaces [J].
Hatsukade, Toru ;
Kuhl, Kendra P. ;
Cave, Etosha R. ;
Abram, David N. ;
Jaramillo, Thomas F. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (27) :13814-13819
[8]   New Insights Into the Role of Imidazolium-Based Promoters for the Electroreduction of CO2 on a Silver Electrode [J].
Lau, Genevieve P. S. ;
Schreier, Marcel ;
Vasilyev, Drnitry ;
Scopelliti, Rosario ;
Gratzel, Michael ;
Dyson, Paul J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (25) :7820-7823
[9]   Molecular tuning of CO2-to-ethylene conversion [J].
Li, Fengwang ;
Thevenon, Arnaud ;
Rosas-Hernandez, Alonso ;
Wang, Ziyun ;
Li, Yilin ;
Gabardo, Christine M. ;
Ozden, Adnan ;
Cao Thang Dinh ;
Li, Jun ;
Wang, Yuhang ;
Edwards, Jonathan P. ;
Xu, Yi ;
McCallum, Christopher ;
Tao, Lizhi ;
Liang, Zhi-Qin ;
Luo, Mingchuan ;
Wang, Xue ;
Li, Huihui ;
O'Brien, Colin P. ;
Tan, Chih-Shan ;
Nam, Dae-Hyun ;
Quintero-Bermudez, Rafael ;
Zhuang, Tao-Tao ;
Li, Yuguang C. ;
Han, Zhiji ;
Britt, R. David ;
Sinton, David ;
Agapie, Theodor ;
Peters, Jonas C. ;
Sargent, Edward H. .
NATURE, 2020, 577 (7791) :509-+
[10]   Insight into the Microenvironments of the Metal-Ionic Liquid Interface during Electrochemical CO2 Reduction [J].
Lim, Hyung-Kyu ;
Kwon, Youngkook ;
Kim, Han Seul ;
Jeon, Jiwon ;
Kim, Yong-Hoon ;
Lim, Jung-Ae ;
Kim, Beom-Sik ;
Choi, Jina ;
Kim, Hyungjun .
ACS CATALYSIS, 2018, 8 (03) :2420-2427