A new data structure for accelerating kinetic Monte Carlo method

被引:0
作者
Zheng, Xu-Li [1 ,4 ]
Quan, Dong-Hui [1 ,2 ]
Zhang, Hai-Long [1 ]
Li, Xiao-Hu [1 ]
Chang, Qiang [1 ]
Sipila, Olli [3 ]
机构
[1] Chinese Acad Sci, Xinjiang Astron Observ, Urumqi 830011, Peoples R China
[2] Eastern Kentucky Univ, Dept Chem, Richmond, KY 40475 USA
[3] Max Planck Inst Extraterr Phys MPE, Giessenbachstr 1, D-85748 Garching, Germany
[4] Univ Chinese Acad Sci, Sch Astron & Space Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
astrochemistry; molecular processes; methods: numerical; ISM: molecules; ISM: abundances; DENSE INTERSTELLAR CLOUDS; GAS-GRAIN CHEMISTRY; MODELS; SIMULATION; MANTLES; PHASE;
D O I
10.1088/1674-4527/19/12/176
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The kinetic Monte Carlo simulation is a rigorous numerical approach to study the chemistry on dust grains in cold dense interstellar clouds. By tracking every single reaction in chemical networks step by step, this approach produces more precise results than other approaches but takes too much computing time. Here we present a method of a new data structure, which is applicable to any physical conditions and chemical networks, to save computing time for the Monte Carlo algorithm. Using the improved structure, the calculating time is reduced by 80 percent compared with the linear structure when applied to the osu-2008 chemical network at 10 K. We investigate the effect of the encounter desorption in cold cores using the kinetic Monte Carlo model with an accelerating data structure. We found that the encounter desorption remarkably decreases the abundance of grain-surface H-2 but slightly influences the abundances of other species on the grain.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Monte Carlo and Kinetic Monte Carlo Models for Deposition Processes: A Review of Recent Works
    Cheimarios, Nikolaos
    To, Deifilia
    Kokkoris, George
    Memos, George
    Boudouvis, Andreas G.
    FRONTIERS IN PHYSICS, 2021, 9
  • [22] Simulation for deposition of ZnO thin film layer by kinetic Monte Carlo method
    Dee, C. F.
    Lee, J. D.
    Sow, C. H.
    Majlis, B. Y.
    Hamzah, A.
    Abdullah, H.
    Lee, S. -K.
    MATERIALS RESEARCH INNOVATIONS, 2009, 13 (03) : 135 - 138
  • [23] Kinetic Monte Carlo simulation of electrodeposition using the embedded-atom method
    Treeratanaphitak, Tanyakarn
    Pritzker, Mark D.
    Abukhdeir, Nasser Mohieddin
    ELECTROCHIMICA ACTA, 2014, 121 : 407 - 414
  • [24] Application of the kinetic Monte Carlo method in the microscopic description of argon adsorption on graphite
    Nguyen, Van T.
    Do, D. D.
    Nicholson, D.
    Ustinov, E. A.
    MOLECULAR PHYSICS, 2012, 110 (18) : 2281 - 2294
  • [25] Refining the least squares Monte Carlo method by imposing structure
    Letourneau, Pascal
    Stentoft, Lars
    QUANTITATIVE FINANCE, 2014, 14 (03) : 495 - 507
  • [26] Lattice kinetic Monte Carlo method on fractal growth of transition metal dichalcogenides
    Chen, Xuejiang
    Lin, Yishan
    Ai, Wensen
    Zhang, Xinyao
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2025, 43 (01):
  • [27] Octree-search Kinetic Monte Carlo
    Gosalvez, M. A.
    Xing, Y.
    Sato, K.
    Nieminen, R. M.
    SENSORS AND ACTUATORS A-PHYSICAL, 2010, 159 (01) : 64 - 68
  • [28] kmos: A lattice kinetic Monte Carlo framework
    Hoffmann, Max J.
    Matera, Sebastian
    Reuter, Karsten
    COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (07) : 2138 - 2150
  • [29] Kinetic Monte Carlo simulations of proton conductivity
    Maslowski, T.
    Drzewinski, A.
    Ulner, J.
    Wojtkiewicz, J.
    Zdanowska-Fraczek, M.
    Nordlund, K.
    Kuronen, A.
    PHYSICAL REVIEW E, 2014, 90 (01):
  • [30] Bayesian Monte Carlo method
    Rajabalinejad, M.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2010, 95 (10) : 1050 - 1060