Risk prediction of clinical adverse outcomes with machine learning in a cohort of critically ill patients with atrial fibrillation

被引:13
作者
Falsetti, Lorenzo [1 ]
Rucco, Matteo [2 ]
Proietti, Marco [3 ,4 ,5 ,6 ]
Viticchi, Giovanna [7 ]
Zaccone, Vincenzo [1 ]
Scarponi, Mattia [8 ]
Giovenali, Laura [8 ]
Moroncini, Gianluca [9 ]
Nitti, Cinzia [1 ]
Salvi, Aldo [1 ]
机构
[1] AOU Osped Riuniti Ancona, Internal & Sub Intens Med Dept, Via Conca 10, I-60126 Ancona, Italy
[2] United Technol Res Ctr, Cyber Phys Dept, Trento, Italy
[3] Univ Milan, Dept Clin Sci & Community Hlth, Milan, Italy
[4] IRCCS Ist Clin Scientif Maugeri, Geriatr Unit, Milan, Italy
[5] Univ Liverpool, Liverpool Ctr Cardiovasc Sci, Liverpool, Merseyside, England
[6] Liverpool Heart & Chest Hosp, Liverpool, Merseyside, England
[7] AOU Osped Riuniti, Neurol Clin Dept, Ancona, Italy
[8] Marche Polytech Univ, Emergency Med Residency Program, Ancona, Italy
[9] Azienda Osped Univ Osped Riuniti, Clin Med, Ancona, Italy
关键词
DISEASE; CLASSIFICATION; GUIDELINES; MANAGEMENT;
D O I
10.1038/s41598-021-97218-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Critically ill patients affected by atrial fibrillation are at high risk of adverse events: however, the actual risk stratification models for haemorrhagic and thrombotic events are not validated in a critical care setting. With this paper we aimed to identify, adopting topological data analysis, the risk factors for therapeutic failure (in-hospital death or intensive care unit transfer), the in-hospital occurrence of stroke/TIA and major bleeding in a cohort of critically ill patients with pre-existing atrial fibrillation admitted to a stepdown unit; to engineer newer prediction models based on machine learning in the same cohort. We selected all medical patients admitted for critical illness and a history of pre-existing atrial fibrillation in the timeframe 01/01/2002-03/08/2007. All data regarding patients' medical history, comorbidities, drugs adopted, vital parameters and outcomes (therapeutic failure, stroke/TIA and major bleeding) were acquired from electronic medical records. Risk factors for each outcome were analyzed adopting topological data analysis. Machine learning was used to generate three different predictive models. We were able to identify specific risk factors and to engineer dedicated clinical prediction models for therapeutic failure (AUC: 0.974, 95%CI: 0.934-0.975), stroke/TIA (AUC: 0.931, 95%CI: 0.896-0.940; Brier score: 0.13) and major bleeding (AUC: 0.930:0.911-0.939; Brier score: 0.09) in critically-ill patients, which were able to predict accurately their respective clinical outcomes. Topological data analysis and machine learning techniques represent a concrete viewpoint for the physician to predict the risk at the patients' level, aiding the selection of the best therapeutic strategy in critically ill patients affected by pre-existing atrial fibrillation.
引用
收藏
页数:11
相关论文
共 43 条
[11]  
Chen Tianqi, 2016, PROC ACM SIGKDD INT
[12]   The attribute mortality and length of intensive care unit stay of clinically important gastrointestinal bleeding in critically ill patients [J].
Cook D.J. ;
Griffith L.E. ;
Walter S.D. ;
Guyatt G.H. ;
Meade M.O. ;
Heyland D.K. ;
Kirby A. ;
Tryba M. .
Critical Care, 5 (6) :368-375
[13]   Venous thromboembolism and bleeding in critically ill patients with severe renal insufficiency receiving dalteparin thromboprophylaxis: prevalence, incidence and risk factors [J].
Cook, Deborah ;
Douketis, James ;
Meade, Maureen ;
Guyatt, Gordon ;
Zytaruk, Nicole ;
Granton, John ;
Skrobik, Yoanna ;
Albert, Martin ;
Fowler, Robert ;
Hebert, Paul ;
Pagliarello, Guiseppe ;
Friedrich, Jan ;
Freitag, Andreas ;
Karachi, Tim ;
Rabbat, Christian ;
Heels-Ansdell, Diane ;
Geerts, William ;
Crowther, Mark .
CRITICAL CARE, 2008, 12 (02)
[14]   Guidelines on the management of atrial fibrillation in the emergency department: a critical appraisal [J].
Costantino, Giorgio ;
Podda, Gian Marco ;
Falsetti, Lorenzo ;
Iannone, Primiano ;
Lages, Ana ;
Marra, Alberto M. ;
Masala, Maristella ;
Reiakvam, Olaug Marie ;
Savva, Florentia ;
Schovanek, Jan ;
van Bree, Sjoerd ;
Chora, Ines Joao da Silva ;
Privitera, Graziella ;
Ragozzino, Silvio ;
von Rotz, Matthias ;
Woittiez, Lycke ;
Davidson, Christopher ;
Montano, Nicola .
INTERNAL AND EMERGENCY MEDICINE, 2017, 12 (05) :693-703
[15]  
Ester M., 1996, P 2 INT C KNOWL DISC, V96, P226, DOI DOI 10.5555/3001460.3001507
[16]  
Falsetti L., 2019, MENDELEY DATA, V4
[17]  
Falsetti L., 2019, AMS DOTTORATO U BOLO, DOI [10.6092/unibo/amsdottorato/8767, DOI 10.6092/UNIBO/AMSDOTTORATO/8767]
[18]   Impact of atrial fibrillation in critically ill patients admitted to a stepdown unit [J].
Falsetti, Lorenzo ;
Proietti, Marco ;
Zaccone, Vincenzo ;
Guerra, Federico ;
Nitti, Cinzia ;
Salvi, Aldo ;
Viticchi, Giovanna ;
Riccomi, Francesca ;
Sampaolesi, Mattia ;
Silvestrini, Mauro ;
Moroncini, Gianluca ;
Lip, Gregory Y. H. ;
Capucci, Alessandro .
EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2020, 50 (11)
[19]  
Fröhlich H, 2005, IEEE IJCNN, P1431
[20]  
Grimme T., USE AI ANAL PROCESS