AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence

被引:547
作者
Feldgarden, Michael [1 ]
Brover, Vyacheslav [1 ]
Gonzalez-Escalona, Narjol [2 ]
Frye, Jonathan G. [4 ]
Haendiges, Julie [2 ]
Haft, Daniel H. [1 ]
Hoffmann, Maria [2 ]
Pettengill, James B. [2 ]
Prasad, Arjun B. [1 ]
Tillman, Glenn E. [5 ]
Tyson, Gregory H. [3 ]
Klimke, William [1 ]
机构
[1] NIH, Natl Ctr Biotechnol Informat, Natl Lib Med, Bldg 10, Bethesda, MD 20892 USA
[2] US FDA, Ctr Food Safety & Appl Nutr, College Pk, MD USA
[3] US FDA, Ctr Vet Med, Laurel, MD USA
[4] ARS, Bacterial Epidemiol & Antimicrobial Resistance Re, US Natl Poultry Res Ctr, USDA, Athens, GA USA
[5] USDA, Food Safety & Inspect Serv, Athens, GA USA
基金
美国国家卫生研究院;
关键词
SALMONELLA;
D O I
10.1038/s41598-021-91456-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Antimicrobial resistance (AMR) is a significant public health threat. With the rise of affordable whole genome sequencing, in silico approaches to assessing AMR gene content can be used to detect known resistance mechanisms and potentially identify novel mechanisms. To enable accurate assessment of AMR gene content, as part of a multi-agency collaboration, NCBI developed a comprehensive AMR gene database, the Bacterial Antimicrobial Resistance Reference Gene Database and the AMR gene detection tool AMRFinder. Here, we describe the expansion of the Reference Gene Database, now called the Reference Gene Catalog, to include putative acid, biocide, metal, stress resistance genes, in addition to virulence genes and species-specific point mutations. Genes and point mutations are classified by broad functions, as well as more detailed functions. As we have expanded both the functional repertoire of identified genes and functionality, NCBI released a new version of AMRFinder, known as AMRFinderPlus. This new tool allows users the option to utilize only the core set of AMR elements, or include stress response and virulence genes, too. AMRFinderPlus can detect acquired genes and point mutations in both protein and nucleotide sequence. In addition, the evidence used to identify the gene has been expanded to include whether nucleotide or protein sequence was used, its location in the contig, and presence of an internal stop codon. These database improvements and functional expansions will enable increased precision in identifying AMR genes, linking AMR genotypes and phenotypes, and determining possible relationships between AMR, virulence, and stress response.
引用
收藏
页数:9
相关论文
共 33 条
  • [1] Genomics of foodborne pathogens for microbial food safety
    Allard, Marc W.
    Bell, Rebecca
    Ferreira, Christina M.
    Gonzalez-Escalona, Narjol
    Hoffmann, Maria
    Muruvanda, Tim
    Ottesen, Andrea
    Ramachandran, Padmini
    Reed, Elizabeth
    Sharma, Shashi
    Stevens, Eric
    Timme, Ruth
    Zheng, Jie
    Brown, Eric W.
    [J]. CURRENT OPINION IN BIOTECHNOLOGY, 2018, 49 : 224 - 229
  • [2] BASIC LOCAL ALIGNMENT SEARCH TOOL
    ALTSCHUL, SF
    GISH, W
    MILLER, W
    MYERS, EW
    LIPMAN, DJ
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) : 403 - 410
  • [3] ResFinder 4.0 for predictions of phenotypes from genotypes
    Bortolaia, Valeria
    Kaas, Rolf S.
    Ruppe, Etienne
    Roberts, Marilyn C.
    Schwarz, Stefan
    Cattoir, Vincent
    Philippon, Alain
    Allesoe, Rosa L.
    Rebelo, Ana Rita
    Florensa, Alfred Ferrer
    Fagelhauer, Linda
    Chakraborty, Trinad
    Neumann, Bernd
    Werner, Guido
    Bender, Jennifer K.
    Stingl, Kerstin
    Minh Nguyen
    Coppens, Jasmine
    Xavier, Basil Britto
    Malhotra-Kumar, Surbhi
    Westh, Henrik
    Pinholt, Mette
    Anjum, Muna F.
    Duggett, Nicholas A.
    Kempf, Isabelle
    Nykasenoja, Suvi
    Olkkola, Satu
    Wieczorek, Kinga
    Amaro, Ana
    Clemente, Lurdes
    Mossong, Joel
    Losch, Serge
    Ragimbeau, Catherine
    Lund, Ole
    Aarestrup, Frank M.
    [J]. JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2020, 75 (12) : 3491 - 3500
  • [4] ICEs Are the Main Reservoirs of the Ciprofloxacin-ModifyingcrpPGene inPseudomonas aeruginosa
    Botelho, Joao
    Grosso, Filipa
    Peixe, Luisa
    [J]. GENES, 2020, 11 (08) : 1 - 12
  • [5] BLAST plus : architecture and applications
    Camacho, Christiam
    Coulouris, George
    Avagyan, Vahram
    Ma, Ning
    Papadopoulos, Jason
    Bealer, Kevin
    Madden, Thomas L.
    [J]. BMC BIOINFORMATICS, 2009, 10
  • [6] Emergence of new variants of antibiotic resistance genomic islands among multidrug-resistant Salmonella enterica in poultry
    Cohen, Emiliano
    Davidovich, Maya
    Rokney, Assaf
    Valinsky, Lea
    Rahav, Galia
    Gal-Mor, Ohad
    [J]. ENVIRONMENTAL MICROBIOLOGY, 2020, 22 (01) : 413 - 432
  • [7] Coordinators N.R, 2015, Nucleic Acid Res, V44, pD7
  • [8] Comparison of phenotypic and WGS-derived antimicrobial resistance profiles of Salmonella enterica serovars Typhi and Paratyphi
    Day, Martin R.
    Doumith, Michel
    Do Nascimento, Vivienne
    Nair, Satheesh
    Ashton, Philip M.
    Jenkins, Claire
    Dallman, Timothy J.
    Stevens, Flora J.
    Freedman, Joanne
    Hopkins, Katie L.
    Woodford, Neil
    De Pinna, Elizabeth M.
    Godbole, Gauri
    [J]. JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2018, 73 (02) : 365 - 372
  • [9] Comparison of phenotypic and WGS-derived antimicrobial resistance profiles of enteroaggregative Escherichia coli isolated from cases of diarrhoeal disease in England, 2015-16
    Do Nascimento, Vivienne
    Day, Martin R.
    Doumith, Michel
    Hopkins, Katie L.
    Woodford, Neil
    Godbole, Gauri
    Jenkins, Claire
    [J]. JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 2017, 72 (12) : 3288 - 3297
  • [10] MEGARes 2.0: a database for classification of antimicrobial drug, biocide and metal resistance determinants in metagenomic sequence data
    Doster, Enrique
    Lakin, Steven M.
    Dean, Christopher J.
    Wolfe, Cory
    Young, Jared G.
    Boucher, Christina
    Belk, Keith E.
    Noyes, Noelle R.
    Morley, Paul S.
    [J]. NUCLEIC ACIDS RESEARCH, 2020, 48 (D1) : D561 - D569