A note on generalized Robertson-Walker space-times

被引:65
作者
Mantica, Carlo Alberto [1 ,2 ]
Suh, Young Jin [3 ]
De, Uday Chand [1 ,4 ]
机构
[1] Univ Milan, Dept Phys, Via Celoria 16, I-20133 Milan, Italy
[2] IIS Lagrange, Via L,Modignani 65, I-20161 Milan, Italy
[3] Kyungpook Natl Univ, Dept Math, Taegu 702701, South Korea
[4] Univ Calcutta, Dept Pure Math, 35 Ballygunge Circular Rd, Kolkata 700019, W Bengal, India
基金
新加坡国家研究基金会;
关键词
Generalized Robertson-Walker space-time; time-like concircular vector field; Lorentzian manifolds with divergence free Weyl tensor; perfect fluid space-times; scalar field space-times with time-like gradient; CURVATURE; GEOMETRY;
D O I
10.1142/S0219887816500791
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A generalized Robertson-Walker (GRW) space-time is the generalization of the classical Robertson-Walker space-time. In the present paper, we show that a Ricci simple manifold with vanishing divergence of the conformal curvature tensor admits a proper concircular vector field and it is necessarily a GRW space-time. Further, we show that a stiff matter perfect fluid space-time or a mass-less scalar field with time-like gradient and with divergence-free Weyl tensor are GRW space-times.
引用
收藏
页数:9
相关论文
共 33 条
[1]   Spacelike hypersurfaces of constant mean curvature and Calabi-Bernstein type problems [J].
Alias, LJ ;
Romero, A ;
Sanchez, M .
TOHOKU MATHEMATICAL JOURNAL, 1997, 49 (03) :337-345
[2]   UNIQUENESS OF COMPLETE SPACELIKE HYPERSURFACES OF CONSTANT MEAN-CURVATURE IN GENERALIZED ROBERTSON-WALKER SPACETIMES [J].
ALIAS, LJ ;
ROMERO, A ;
SANCHEZ, M .
GENERAL RELATIVITY AND GRAVITATION, 1995, 27 (01) :71-84
[3]   On the rigidity of complete spacelike hypersurfaces immersed in a generalized Robertson-Walker spacetime [J].
Alias, Luis J. ;
Colares, Antonio Gervasio ;
de Lima, Henrique F. .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (02) :195-217
[4]   UPPER AND LOWER BOUNDS FOR THE VOLUME OF A COMPACT SPACELIKE HYPERSURFACE IN A GENERALIZED ROBERTSON-WALKER SPACETIME [J].
Angel Aledo, Juan ;
Romero, Alfonso ;
Rubio, Rafael M. .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2014, 11 (01)
[5]  
[Anonymous], 1990, Relativity on curved manifolds
[6]  
[Anonymous], 1973, CAMBRIDGE MONOGRAPHS
[7]  
[Anonymous], 2000, STEPS DIFF GEOM PROC
[8]  
[Anonymous], 1994, Colloq. Math, DOI DOI 10.4064/CM-67-1-73-89
[9]  
[Anonymous], 2001, SOOCHOW J MATH
[10]  
[Anonymous], 1994, Soo-chow J. Math.