Selberg's orthogonality conjecture and symmetric power L-functions

被引:0
作者
Wong, Peng-Jie [1 ]
机构
[1] Univ Lethbridge, Dept Math & Comp Sci, Lethbridge, AB T1K 3M4, Canada
关键词
Selberg's orthogonality conjecture; Symmetric power L-functions;
D O I
10.1016/j.jnt.2021.11.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let pi be a cuspidal representation of GL(2)(A(Q)) defined by a non-CM holomorphic newform of weight w >= 2, and let K/Q be a totally real Galois extension with Galois group G. In this article, under Selberg's orthogonality conjecture, we show that for any irreducible character chi of G, the twisted symmetric power L-function L(s, Sym(m) pi x chi) is a primitive function in the Selberg class, and it is automorphic subject to further the solvability of K/Q. The key new idea is to apply the work of Barnet-Lamb, Geraghty, Harris, and Taylor on the potential automorphy of Sym(m) pi. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:967 / 977
页数:11
相关论文
共 20 条
  • [1] Arthur J., 1990, Simple algebras, base change, and the advanced theory of the trace formula
  • [2] Potential automorphy and change of weight
    Barnet-Lamb, Thomas
    Gee, Toby
    Geraghty, David
    Taylor, Richard
    [J]. ANNALS OF MATHEMATICS, 2014, 179 (02) : 501 - 609
  • [3] THE SATO-TATE CONJECTURE FOR HILBERT MODULAR FORMS
    Barnet-Lamb, Thomas
    Gee, Toby
    Geraghty, David
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (02) : 411 - 469
  • [4] A Family of Calabi-Yau Varieties and Potential Automorphy II
    Barnet-Lamb, Tom
    Geraghty, David
    Harris, Michael
    Taylor, Richard
    [J]. PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2011, 47 (01) : 29 - 98
  • [5] ON ARTIN L-SERIES WITH GENERAL GROUP CHARACTERS
    BRAUER, R
    [J]. ANNALS OF MATHEMATICS, 1947, 48 (02) : 502 - 514
  • [6] Effective multiplicity one on GLN and narrow zero-free regions for Rankin-Selberg L-functions
    Brumley, Farrell
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2006, 128 (06) : 1455 - 1474
  • [7] LEVEL-RAISING AND SYMMETRIC POWER FUNCTORIALITY, III
    Clozel, Laurent
    Thorne, Jack A.
    [J]. DUKE MATHEMATICAL JOURNAL, 2017, 166 (02) : 325 - 402
  • [8] AUTOMORPHY FOR SOME l-ADIC LIFTS OF AUTOMORPHIC MOD l GALOIS REPRESENTATIONS
    Clozel, Laurent
    Harris, Michael
    Taylor, Richard
    [J]. PUBLICATIONS MATHEMATIQUES DE L'IHES, NO 108, 2008, 108 (108): : 1 - 181
  • [9] ON THE SELBERG CLASS OF DIRICHLET SERIES - SMALL DEGREES
    CONREY, JB
    GHOSH, A
    [J]. DUKE MATHEMATICAL JOURNAL, 1993, 72 (03) : 673 - 693
  • [10] A family of Calabi-Yau varieties and potential automorphy
    Harris, Michael
    Shepherd-Barron, Nick
    Taylor, Richard
    [J]. ANNALS OF MATHEMATICS, 2010, 171 (02) : 779 - 813