Applications of Machine Learning to the Problem of Antimicrobial Resistance: an Emerging Model for Translational Research

被引:96
作者
Anahtar, Melis N. [1 ]
Yang, Jason H. [2 ,3 ]
Kanjilal, Sanjat [4 ,5 ,6 ]
机构
[1] Massachusetts Gen Hosp, Dept Pathol, Boston, MA 02114 USA
[2] Rutgers State Univ, Ctr Emerging Pathogens, New Jersey Med Sch, Newark, NJ USA
[3] Rutgers State Univ, New Jersey Med Sch, Dept Microbiol Biochem & Mol Genet, Newark, NJ USA
[4] Harvard Med Sch, Dept Populat Med, Boston, MA 02115 USA
[5] Harvard Pilgrim Healthcare Inst, Boston, MA 02115 USA
[6] Brigham & Womens Hosp, Div Infect Dis, 75 Francis St, Boston, MA 02115 USA
关键词
antibiotic resistance; antimicrobial stewardship; drug discovery; machine learning; mechanisms of action; whole-genome sequencing; DECISION-SUPPORT-SYSTEM; PREDICTION; SEPSIS; HEALTH; TREAT;
D O I
10.1128/JCM.01260-20
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Antimicrobial resistance (AMR) remains one of the most challenging phenomena of modern medicine. Machine learning (ML) is a subfield of artificial intelligence that focuses on the development of algorithms that learn how to accurately predict outcome variables using large sets of predictor variables that are typically not hand selected and are minimally curated. Models are parameterized using a training data set and then applied to a test data set on which predictive performance is evaluated. The application of ML algorithms to the problem of AMR has garnered increasing interest in the past 5 years due to the exponential growth of experimental and clinical data, heavy investment in computational capacity, improvements in algorithm performance, and increasing urgency for innovative approaches to reducing the burden of disease. Here, we review the current state of research at the intersection of ML and AMR with an emphasis on three domains of work. The first is the prediction of AMR using genomic data. The second is the use of ML to gain insight into the cellular functions disrupted by antibiotics, which forms the basis for understanding mechanisms of action and developing novel anti-infectives. The third focuses on the application of ML for antimicrobial stewardship using data extracted from the electronic health record. Although the use of ML for understanding, diagnosing, treating, and preventing AMR is still in its infancy, the continued growth of data and interest ensures it will become an important tool for future translational research programs.
引用
收藏
页数:14
相关论文
共 86 条
[1]   Prediction of Susceptibility to First-Line Tuberculosis Drugs by DNA Sequencing [J].
Allix-Beguec, Caroline ;
Arandjelovic, Irena ;
Bi, Lijun ;
Beckert, Patrick ;
Bonnet, Maryline ;
Bradley, Phelim ;
Cabibbe, Andrea M. ;
Cancino-Munoz, Irving ;
Caulfield, Mark J. ;
Chaiprasert, Angkana ;
Cirillo, Daniela M. ;
Clifton, David ;
Comas, Inaki ;
Crook, Derrick W. ;
De Filippo, Maria R. ;
de Neeling, Han ;
Diel, Roland ;
Drobniewski, Francis A. ;
Faksri, Kiatichai ;
Farhat, Maha R. ;
Fleming, Joy ;
Fowler, Philip ;
Fowler, Tom A. ;
Gao, Qian ;
Gardy, Jennifer ;
Gascoyne-Binzi, Deborah ;
Gibertoni-Cruz, Ana-Luiza ;
Gil-Brusola, Ana ;
Golubchik, Tanya ;
Gonzalo, Ximena ;
Grandjean, Louis ;
He, Guangxue ;
Guthrie, Jennifer L. ;
Hoosdally, Sarah ;
Hunt, Martin ;
Iqbal, Zamin ;
Ismail, Nazir ;
Johnston, James ;
Khanzada, Faisal M. ;
Khor, Chiea C. ;
Kohl, Thomas A. ;
Kong, Clare ;
Lipworth, Sam ;
Liu, Qingyun ;
Maphalala, Gugu ;
Martinez, Elena ;
Mathys, Vanessa ;
Merker, Matthias ;
Miotto, Paolo ;
Mistry, Nerges .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 379 (15) :1403-1415
[2]  
[Anonymous], 2019, Antibiotic resistance threats in the United States
[3]  
[Anonymous], 2016, ARXIV161109340
[4]   DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data [J].
Arango-Argoty, Gustavo ;
Garner, Emily ;
Prudent, Amy ;
Heath, Lenwood S. ;
Vikesland, Peter ;
Zhang, Liqing .
MICROBIOME, 2018, 6
[5]   A k-mer-based method for the identification of phenotype-associated genomic biomarkers and predicting phenotypes of sequenced bacteria [J].
Aun, Erki ;
Brauer, Age ;
Kisand, Veljo ;
Tenson, Tanel ;
Remm, Maido .
PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (10)
[6]   Antibiotic Use and Emerging Resistance How Can Resource-Limited Countries Turn the Tide? [J].
Bebell, Lisa M. ;
Muiru, Anthony N. .
GLOBAL HEART, 2014, 9 (03) :347-358
[7]   Bactericidal Antibiotics Induce Toxic Metabolic Perturbations that Lead to Cellular Damage [J].
Belenky, Peter ;
Ye, Jonathan D. ;
Porter, Caroline B. M. ;
Cohen, Nadia R. ;
Lobritz, Michael A. ;
Ferrante, Thomas ;
Jain, Saloni ;
Korry, Benjamin J. ;
Schwarz, Eric G. ;
Walker, Graham C. ;
Collins, James J. .
CELL REPORTS, 2015, 13 (05) :968-980
[8]   Simultaneous detection of genotype and phenotype enables rapid and accurate antibiotic susceptibility determination [J].
Bhattacharyya, Roby P. ;
Bandyopadhyay, Nirmalya ;
Ma, Peijun ;
Son, Sophie S. ;
Liu, Jamin ;
He, Lorrie L. ;
Wu, Lidan ;
Khafizov, Rustem ;
Boykin, Rich ;
Cerqueira, Gustavo C. ;
Pironti, Alejandro ;
Rudy, Robert F. ;
Patel, Milesh M. ;
Yang, Rui ;
Skerry, Jennifer ;
Nazarian, Elizabeth ;
Musser, Kimberly A. ;
Taylor, Jill ;
Pierce, Virginia M. ;
Earl, Ashlee M. ;
Cosimi, Lisa A. ;
Shoresh, Noam ;
Beechem, Joseph ;
Livny, Jonathan ;
Hung, Deborah T. .
NATURE MEDICINE, 2019, 25 (12) :1858-+
[9]   Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis [J].
Bradley, Phelim ;
Gordon, N. Claire ;
Walker, Timothy M. ;
Dunn, Laura ;
Heys, Simon ;
Huang, Bill ;
Earle, Sarah ;
Pankhurst, Louise J. ;
Anson, Luke ;
de Cesare, Mariateresa ;
Piazza, Paolo ;
Votintseva, Antonina A. ;
Golubchik, Tanya ;
Wilson, Daniel J. ;
Wyllie, David H. ;
Diel, Roland ;
Niemann, Stefan ;
Feuerriegel, Silke ;
Kohl, Thomas A. ;
Ismail, Nazir ;
Omar, Shaheed V. ;
Smith, E. Grace ;
Buck, David ;
McVean, Gil ;
Walker, A. Sarah ;
Peto, Tim E. A. ;
Crook, Derrick W. ;
Iqbal, Zamin .
NATURE COMMUNICATIONS, 2015, 6
[10]   Antibacterial drug discovery in the resistance era [J].
Brown, Eric D. ;
Wright, Gerard D. .
NATURE, 2016, 529 (7586) :336-343