Statistical methods for dementia risk prediction and recommendations for future work: A systematic review

被引:36
作者
Goerdten, Jantje [1 ,2 ]
Cukic, Iva [1 ,2 ]
Danso, Samuel O. [1 ,2 ]
Carriere, Isabelle [3 ]
Muniz-Terrera, Graciela [1 ,2 ]
机构
[1] Univ Edinburgh, Edinburgh Dementia Prevent, Edinburgh, Midlothian, Scotland
[2] Univ Edinburgh, Ctr Clin Brain Sci, Edinburgh, Midlothian, Scotland
[3] INSERM, Neuropsychiat Rech Epidemiol & Clin, Montpellier, France
关键词
Dementia risk models; Methodological review; Logistic regression; Cox models; Machine learning; PROPORTIONAL-HAZARDS; MODELS; VALIDATION;
D O I
10.1016/j.trci.2019.08.001
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
IntroductionNumerous dementia risk prediction models have been developed in the past decade. However, methodological limitations of the analytical tools used may hamper their ability to generate reliable dementia risk scores. We aim to review the used methodologies. MethodsWe systematically reviewed the literature from March 2014 to September 2018 for publications presenting a dementia risk prediction model. We critically discuss the analytical techniques used in the literature. ResultsIn total 137 publications were included in the qualitative synthesis. Three techniques were identified as the most commonly used methodologies: machine learning, logistic regression, and Cox regression. DiscussionWe identified three major methodological weaknesses: (1) over-reliance on one data source, (2) poor verification of statistical assumptions of Cox and logistic regression, and (3) lack of validation. The use of larger and more diverse data sets is recommended. Assumptions should be tested thoroughly, and actions should be taken if deviations are detected.
引用
收藏
页码:563 / 569
页数:7
相关论文
共 24 条
[1]   Flexible modeling of the effects of serum cholesterol on coronary heart disease mortality [J].
Abrahamowicz, M ;
duBerger, R ;
Grover, SA .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 1997, 145 (08) :714-729
[2]  
Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.1016/j.jclinepi.2014.11.010, 10.1038/bjc.2014.639, 10.1136/bmj.g7594, 10.1016/j.eururo.2014.11.025, 10.7326/M14-0697, 10.1186/s12916-014-0241-z, 10.1002/bjs.9736, 10.7326/M14-0698]
[3]   Machine learning and microsimulation techniques on the prognosis of dementia: A systematic literature review [J].
Dallora, Ana Luiza ;
Eivazzadeh, Shahryar ;
Mendes, Emilia ;
Berglund, Johan ;
Anderberg, Peter .
PLOS ONE, 2017, 12 (06)
[4]   Midlife risk score for the prediction of dementia four decades later [J].
Exalto, Lieza G. ;
Quesenberry, Charles P. ;
Barnes, Deborah ;
Kivipelto, Miia ;
Biessels, Geert Jan ;
Whitmer, Rachel A. .
ALZHEIMERS & DEMENTIA, 2014, 10 (05) :562-570
[5]   Time-dependent covariates in the Cox proportional-hazards regression model [J].
Fisher, LD ;
Lin, DY .
ANNUAL REVIEW OF PUBLIC HEALTH, 1999, 20 :145-157
[6]  
Harrell FE, 1996, STAT MED, V15, P361, DOI 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO
[7]  
2-4
[8]   Models for predicting risk of dementia: a systematic review [J].
Hou, Xiao-He ;
Feng, Lei ;
Zhang, Can ;
Cao, Xi-Peng ;
Tan, Lan ;
Yu, Jin-Tai .
JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2019, 90 (04) :373-379
[9]   EMPIRICAL COMPARISONS OF PROPORTIONAL HAZARDS AND LOGISTIC-REGRESSION MODELS [J].
INGRAM, DD ;
KLEINMAN, JC .
STATISTICS IN MEDICINE, 1989, 8 (05) :525-538
[10]  
Liberati A, 2009, BMJ-BRIT MED J, V339, DOI [10.1136/bmj.b2700, 10.1136/bmj.b2535, 10.1371/journal.pmed.1000097, 10.1016/j.ijsu.2010.02.007, 10.1016/j.ijsu.2010.07.299, 10.1136/bmj.i4086, 10.1186/2046-4053-4-1]