A CONVEX HULL AND CLUSTER-ANALYSIS BASED FAST LARGE-SCALE PHASE UNWRAPPING METHOD FOR MULTIBASELINE SAR INTERFEROGRAMS

被引:0
|
作者
Lan, Yang [1 ,2 ]
Yu, Hanwen [3 ,4 ]
Xing, Mengdao [1 ,2 ]
机构
[1] Xidian Univ, Natl Lab Radar Signal Proc, Xian, Shaanxi, Peoples R China
[2] Xidian Univ, Innovat Ctr Informat Sensing & Understanding, Xian, Shaanxi, Peoples R China
[3] Univ Houston, Dept Civil & Environm Engn, Houston, TX 77204 USA
[4] Univ Houston, Natl Ctr Airborne Laser Mapping, Houston, TX USA
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Phase unwrapping; synthetic apertureradar (SAR) interferometry (InSAR); multibaseline (MB); large-scale; convex hull;
D O I
10.1109/igarss.2019.8900492
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
For the multibaseline (MB) synthetic aperture radar (SAR) interferometry (InSAR), MB phase unwrapping (PU) is an important step. With the rapid development of MB InSAR, the size of the datasets from the MB InSAR system is becoming increasingly larger. Under the situation of "bigdata", MB PU may face new problems with insufficient computing resources, or take too much running time to get the PU result. In order to deal with such case, we propose a convex hull and cluster-analysis based fast large-scale MB PU method (CCFLS) with enlightened by the single baseline (SB) PU method (CHFLS) from H. Yu [1]. CCFLS uses the clustering phenomenon of the MB residues to generate the convex hull of residues set with balance polarity, and avoids spending the computation resources on the area within the convex hull, so that the high-precision PU solution can be quickly obtained. The theoretical analysis and experiment results indicate that CCFLS can effectively reduce memory consumption and calculation time.
引用
收藏
页码:1765 / 1768
页数:4
相关论文
共 50 条
  • [1] A Cluster-Analysis and Convex Hull-Based Fast Large-Scale Phase Unwrapping Method for Single- and Multibaseline SAR Interferograms
    Lan, Yang
    Yu, Hanwen
    Xing, Mengdao
    Plaza, Antonio
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 5416 - 5429
  • [2] A Fast Phase Unwrapping Method for Large-Scale Interferograms
    Yu, Hanwen
    Xing, Mengdao
    Bao, Zheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (07): : 4240 - 4248
  • [3] A CONVEX HULL ALGORITHM BASED FAST LARGE-SCALE TWO-DIMENSIONAL PHASE UNWRAPPING METHOD
    Yu, Hanwen
    Lee, Hyongki
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 3824 - 3827
  • [4] Large-Scale Multibaseline Phase Unwrapping: Interferogram Segmentation Based on Multibaseline Envelope-Sparsity Theorem
    Yu, Hanwen
    Zhou, Yuan
    Ivey, Stephanie S.
    Lan, Yang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (11): : 9308 - 9322
  • [5] A Cluster-Analysis-Based Noise-Robust Phase-Unwrapping Algorithm for Multibaseline Interferograms
    Liu, Huitao
    Xing, Mengdao
    Bao, Zheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (01): : 494 - 504
  • [6] Cluster Correction for Cluster Analysis-Based Multibaseline InSAR Phase Unwrapping
    Yuan, Zhihui
    Chen, Tianjiao
    Yu, Hanwen
    Peng, Wei
    Chen, Lifu
    Xing, Xuemin
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 8600 - 8612
  • [7] A Refined Cluster-Analysis-Based Multibaseline Phase-Unwrapping Algorithm
    Jiang, Zhibiao
    Wang, Jian
    Song, Qian
    Zhou, Zhimin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (09) : 1565 - 1569
  • [8] A Cluster-Analysis-Based Efficient Multibaseline Phase-Unwrapping Algorithm
    Yu, Hanwen
    Li, Zhenfang
    Bao, Zheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (01): : 478 - 487
  • [9] Residues Cluster-Based Segmentation and Outlier-Detection Method for Large-Scale Phase Unwrapping
    Yu, Hanwen
    Li, Zhenfang
    Bao, Zheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (10) : 2865 - 2875
  • [10] Deep Learning for the Detection and Phase Unwrapping of Mining-Induced Deformation in Large-Scale Interferograms
    Wu, Zhipeng
    Wang, Teng
    Wang, Yingjie
    Wang, Robert
    Ge, Daqing
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60