Interactive evolutionary multiobjective optimization driven by robust ordinal regression

被引:25
|
作者
Branke, J. [2 ]
Greco, S. [3 ]
Slowinski, R. [1 ,4 ]
Zielniewicz, P. [1 ]
机构
[1] Poznan Univ Tech, Inst Comp Sci, PL-60965 Poznan, Poland
[2] Univ Warwick, Warwick Business Sch, Coventry CV4 7AL, W Midlands, England
[3] Univ Catania, Fac Econ, I-95131 Catania, Italy
[4] Polish Acad Sci, Syst Res Inst, PL-01447 Warsaw, Poland
关键词
evolutionary multiobjective optimization; interactive procedure; robust ordinal regression; ALGORITHM; SET;
D O I
10.2478/v10175-010-0033-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents the Necessary preference enhanced Evolutionary Multiobjective Optimizer (NEMO) which combines an evolutionary multiobjective optimization with robust ordinal regression within an interactive procedure In the course of NEMO the decision maker is asked to express preferences by simply comparing some pairs of solutions in the current population The whole set of additive value functions compatible with this preference information is used within a properly modified version of the evolutionary multiobjective optimization technique NSGA-II in order to focus the search towards solutions satisfying the preferences of the decision maker This allows to speed up convergence to the most preferred region of the Pareto front
引用
收藏
页码:347 / 358
页数:12
相关论文
共 50 条
  • [41] INTERACTIVE ROBUST CONE CONTRACTION METHOD FOR MULTIPLE OBJECTIVE OPTIMIZATION PROBLEMS
    Kadzinski, Milosz
    Slowinski, Roman
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2012, 11 (02) : 327 - 357
  • [42] Evolutionary Multiobjective Optimization With Hybrid Selection Principles
    Li, Ke
    Deb, Kalyanmoy
    Zhang, Qingfu
    2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2015, : 900 - 907
  • [43] A Survey on the Hypervolume Indicator in Evolutionary Multiobjective Optimization
    Shang, Ke
    Ishibuchi, Hisao
    He, Linjun
    Pang, Lie Meng
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2021, 25 (01) : 1 - 20
  • [44] Evolutionary Multiobjective Optimization in Materials Science and Engineering
    Coello Coello, Carlos A.
    Landa Becerra, Ricardo
    MATERIALS AND MANUFACTURING PROCESSES, 2009, 24 (02) : 119 - 129
  • [45] A Taxonomy for Metamodeling Frameworks for Evolutionary Multiobjective Optimization
    Deb, Kalyanmoy
    Hussein, Rayan
    Roy, Proteek Chandan
    Toscano-Pulido, Gregorio
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (01) : 104 - 116
  • [46] Balancing exploration and exploitation in multiobjective evolutionary optimization
    Zhang, Hu
    Sun, Jianyong
    Liu, Tonglin
    Zhang, Ke
    Zhang, Qingfu
    INFORMATION SCIENCES, 2019, 497 : 129 - 148
  • [47] Adapting Decomposed Directions for Evolutionary Multiobjective Optimization
    Su, Yuchao
    Lin, Qiuzhen
    Ming, Zhong
    Tan, Kay Chen
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (10) : 6289 - 6302
  • [48] Evolutionary multiobjective optimization of Topological Active Nets
    Novo, J.
    Penedo, M. G.
    Santos, J.
    PATTERN RECOGNITION LETTERS, 2010, 31 (13) : 1781 - 1794
  • [49] A tutorial on multiobjective optimization: fundamentals and evolutionary methods
    Emmerich, Michael T. M.
    Deutz, Andre H.
    NATURAL COMPUTING, 2018, 17 (03) : 585 - 609
  • [50] On Tchebycheff Decomposition Approaches for Multiobjective Evolutionary Optimization
    Ma, Xiaoliang
    Zhang, Qingfu
    Tian, Guangdong
    Yang, Junshan
    Zhu, Zexuan
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2018, 22 (02) : 226 - 244