Interactive evolutionary multiobjective optimization driven by robust ordinal regression

被引:25
|
作者
Branke, J. [2 ]
Greco, S. [3 ]
Slowinski, R. [1 ,4 ]
Zielniewicz, P. [1 ]
机构
[1] Poznan Univ Tech, Inst Comp Sci, PL-60965 Poznan, Poland
[2] Univ Warwick, Warwick Business Sch, Coventry CV4 7AL, W Midlands, England
[3] Univ Catania, Fac Econ, I-95131 Catania, Italy
[4] Polish Acad Sci, Syst Res Inst, PL-01447 Warsaw, Poland
关键词
evolutionary multiobjective optimization; interactive procedure; robust ordinal regression; ALGORITHM; SET;
D O I
10.2478/v10175-010-0033-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents the Necessary preference enhanced Evolutionary Multiobjective Optimizer (NEMO) which combines an evolutionary multiobjective optimization with robust ordinal regression within an interactive procedure In the course of NEMO the decision maker is asked to express preferences by simply comparing some pairs of solutions in the current population The whole set of additive value functions compatible with this preference information is used within a properly modified version of the evolutionary multiobjective optimization technique NSGA-II in order to focus the search towards solutions satisfying the preferences of the decision maker This allows to speed up convergence to the most preferred region of the Pareto front
引用
收藏
页码:347 / 358
页数:12
相关论文
共 50 条
  • [31] A Review of Evolutionary Multimodal Multiobjective Optimization
    Tanabe, Ryoji
    Ishibuchi, Hisao
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2020, 24 (01) : 193 - 200
  • [32] Evolutionary Multiobjective Optimization With Robustness Enhancement
    He, Zhenan
    Yen, Gary G.
    Lv, Jiancheng
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2020, 24 (03) : 494 - 507
  • [33] Constraint Handling in Multiobjective Evolutionary Optimization
    Woldesenbet, Yonas Gebre
    Yen, Gary G.
    Tessema, Biruk G.
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2009, 13 (03) : 514 - 525
  • [34] Multiobjective Data Mining from Solutions by Evolutionary Multiobjective Optimization
    Nojima, Yusuke
    Tanigaki, Yuki
    Ishibuchi, Hisao
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'17), 2017, : 617 - 624
  • [35] Robust indicator-based algorithm for interactive evolutionary multiple objective optimization
    Tomczyk, Michal K.
    Kadzinski, Milosz
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), 2019, : 629 - 637
  • [36] Robust ordinal regression for decision under risk and uncertainty
    Corrente S.
    Greco S.
    Matarazzo B.
    Słowiński R.
    Journal of Business Economics, 2016, 86 (1-2) : 55 - 83
  • [37] Evolutionary multimodal multiobjective optimization guided by growing neural gas
    Liu, Yiping
    Zhang, Ling
    Zeng, Xiangxiang
    Han, Yuyan
    SWARM AND EVOLUTIONARY COMPUTATION, 2024, 86
  • [38] Selection of a Representative Value Function for Robust Ordinal Regression in Group Decision Making
    Kadzinski, Milosz
    Greco, Salvatore
    Slowinski, Roman
    GROUP DECISION AND NEGOTIATION, 2013, 22 (03) : 429 - 462
  • [39] Interactive Multiobjective Optimization for the Hot Rolling Process
    Sjoberg, Johan
    Lindkvist, Simon
    Linder, Jonas
    Daneryd, Anders
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 7030 - 7036
  • [40] Offspring regeneration driven by finite element mapping for large-scale evolutionary multiobjective optimization
    He, Zhao
    Liu, Hui
    SWARM AND EVOLUTIONARY COMPUTATION, 2023, 83