Interactive evolutionary multiobjective optimization driven by robust ordinal regression

被引:25
|
作者
Branke, J. [2 ]
Greco, S. [3 ]
Slowinski, R. [1 ,4 ]
Zielniewicz, P. [1 ]
机构
[1] Poznan Univ Tech, Inst Comp Sci, PL-60965 Poznan, Poland
[2] Univ Warwick, Warwick Business Sch, Coventry CV4 7AL, W Midlands, England
[3] Univ Catania, Fac Econ, I-95131 Catania, Italy
[4] Polish Acad Sci, Syst Res Inst, PL-01447 Warsaw, Poland
关键词
evolutionary multiobjective optimization; interactive procedure; robust ordinal regression; ALGORITHM; SET;
D O I
10.2478/v10175-010-0033-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents the Necessary preference enhanced Evolutionary Multiobjective Optimizer (NEMO) which combines an evolutionary multiobjective optimization with robust ordinal regression within an interactive procedure In the course of NEMO the decision maker is asked to express preferences by simply comparing some pairs of solutions in the current population The whole set of additive value functions compatible with this preference information is used within a properly modified version of the evolutionary multiobjective optimization technique NSGA-II in order to focus the search towards solutions satisfying the preferences of the decision maker This allows to speed up convergence to the most preferred region of the Pareto front
引用
收藏
页码:347 / 358
页数:12
相关论文
共 50 条
  • [1] Interactive Evolutionary Multiobjective Optimization Using Robust Ordinal Regression
    Branke, Juergen
    Greco, Salvatore
    Slowinski, Roman
    Zielniewicz, Piotr
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION: 5TH INTERNATIONAL CONFERENCE, EMO 2009, 2009, 5467 : 554 - +
  • [2] Learning Value Functions in Interactive Evolutionary Multiobjective Optimization
    Branke, Juergen
    Greco, Salvatore
    Slowinski, Roman
    Zielniewicz, Piotr
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2015, 19 (01) : 88 - 102
  • [3] Explainable interactive evolutionary multiobjective optimization
    Corrente, Salvatore
    Greco, Salvatore
    Matarazzo, Benedetto
    Slowinski, Roman
    OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2024, 122
  • [4] An Interactive Evolutionary Multiobjective Optimization Method: Interactive WASF-GA
    Ruizi, Ana B.
    Luque, Mariano
    Miettinen, Kaisa
    Saborido, Ruben
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PT II, 2015, 9019 : 249 - 263
  • [5] An Interactive Evolutionary Multiobjective Optimization Method Based on Progressively Approximated Value Functions
    Deb, Kalyanmoy
    Sinha, Ankur
    Korhonen, Pekka J.
    Wallenius, Jyrki
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2010, 14 (05) : 723 - 739
  • [6] Interactive Multiple Criteria Decision Making based on preference driven Evolutionary Multiobjective Optimization with controllable accuracy
    Kaliszewski, Ignacy
    Miroforidis, Janusz
    Podkopaev, Dmitry
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2012, 216 (01) : 188 - 199
  • [7] Interactive multiobjective evolutionary optimization model for dam management support
    Castiglione, Federico
    Corrente, Salvatore
    Greco, Salvatore
    Bianucci, Paola
    Sordo-Ward, Alvaro
    Garrote, Luis
    Foti, Enrico
    Musumeci, Rosaria Ester
    JOURNAL OF HYDROLOGY, 2025, 647
  • [8] Interactive Fuzzy Modeling by Evolutionary Multiobjective Optimization with User Preference
    Nojima, Yusuke
    Ishibuchi, Hisao
    PROCEEDINGS OF THE JOINT 2009 INTERNATIONAL FUZZY SYSTEMS ASSOCIATION WORLD CONGRESS AND 2009 EUROPEAN SOCIETY OF FUZZY LOGIC AND TECHNOLOGY CONFERENCE, 2009, : 1839 - 1844
  • [9] Multiobjective Evolutionary Data Mining for Performance Improvement of Evolutionary Multiobjective Optimization
    Nojima, Yusuke
    Tanigaki, Yuki
    Masuyama, Naoki
    Ishibuchi, Hisao
    2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, : 745 - 750
  • [10] Robust ordinal regression in preference learning and ranking
    Corrente, Salvatore
    Greco, Salvatore
    Kadzinski, Milosz
    Slowinski, Roman
    MACHINE LEARNING, 2013, 93 (2-3) : 381 - 422