Boundedness of log pluricanonical representations of log Calabi-Yau pairs in dimension 2

被引:1
作者
Jiang, Chen [1 ]
Liu, Haidong [2 ]
机构
[1] Fudan Univ, Shanghai Ctr Math Sci, Shanghai, Peoples R China
[2] Peking Univ, Beijing Int Ctr Math Res BICMR, Beijing, Peoples R China
关键词
log pluricanonical representation; boundedness; index conjecture; ABUNDANCE THEOREM;
D O I
10.2140/ant.2021.15.545
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show the boundedness of B-pluricanonical representations of lc log Calabi-Yau pairs in dimension 2. As applications, we prove the boundedness of indices of slc log Calabi-Yau pairs up to dimension 3 and that of nonklt lc log Calabi-Yau pairs in dimension 4.
引用
收藏
页码:545 / 567
页数:23
相关论文
共 32 条
[1]  
ABRAMOVICH D, 1992, ASTERISQUE, P139
[2]  
Alexeev V, 2004, ALGEBRA, ARITHMETIC AND GEOMETRY WITH APPLICATIONS, P143
[3]  
Alexeev V., 1994, Internat. J. Math., V5, P779
[4]  
[Anonymous], 1996, COMPLEX ALGEBRAIC SU
[5]  
Birkar C., 2018, ARXIV
[6]   Anti-pluricanonical systems on Fano varieties [J].
Birkar, Caucher .
ANNALS OF MATHEMATICS, 2019, 190 (02) :345-463
[7]   Birational boundedness of rationally connected Calabi-Yau 3-folds [J].
Chen, Weichung ;
Cerbo, Gabriele Di ;
Han, Jingjun ;
Jiang, Chen ;
Svaldi, Roberto .
ADVANCES IN MATHEMATICS, 2021, 378
[8]  
CORTI A, 1992, ASTERISQUE, P171
[9]  
Di Cerbo G, 2016, Compos. Math.
[10]  
Filipazzi S., 2019, arXiv