Kernel methods in Quantum Machine Learning

被引:42
作者
Mengoni, Riccardo [1 ]
Di Pierro, Alessandra [1 ]
机构
[1] Univ Verona, Dept Informat, Verona, Italy
关键词
Quantum Machine Learning; Quantum computing; Kernel methods;
D O I
10.1007/s42484-019-00007-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Quantum Machine Learning has established itself as one of the most promising applications of quantum computers and Noisy Intermediate Scale Quantum (NISQ) devices. In this paper, we review the latest developments regarding the usage of quantum computing for a particular class of machine learning algorithms known as kernel methods.
引用
收藏
页码:65 / 71
页数:7
相关论文
共 56 条
[1]   Pattern Recognition Techniques for Boson Sampling Validation [J].
Agresti, Iris ;
Viggianiello, Niko ;
Flamini, Fulvio ;
Spagnolo, Nicolo ;
Crespi, Andrea ;
Osellame, Roberto ;
Wiebe, Nathan ;
Sciarrino, Fabio .
PHYSICAL REVIEW X, 2019, 9 (01)
[2]  
Aharonov D., 2006, STOC'06. Proceedings of the 38th Annual ACM Symposium on Theory of Computing, P427, DOI 10.1145/1132516.1132579
[3]   Quantum speed-up for unsupervised learning [J].
Aimeur, Esma ;
Brassard, Gilles ;
Gambs, Sebastien .
MACHINE LEARNING, 2013, 90 (02) :261-287
[4]   Towards a feasible implementation of quantum neural networks using quantum dots [J].
Altaisky, Mikhail V. ;
Zolnikova, Nadezhda N. ;
Kaputkina, Natalia E. ;
Krylov, Victor A. ;
Lozovik, Yurii E. ;
Dattani, Nikesh S. .
APPLIED PHYSICS LETTERS, 2016, 108 (10)
[5]   Quantum Boltzmann Machine [J].
Amin, Mohammad H. ;
Andriyash, Evgeny ;
Rolfe, Jason ;
Kulchytskyy, Bohdan ;
Melko, Roger .
PHYSICAL REVIEW X, 2018, 8 (02)
[6]   Quantum optimization for training support vector machines [J].
Anguita, D ;
Ridella, S ;
Rivieccio, F ;
Zunino, R .
NEURAL NETWORKS, 2003, 16 (5-6) :763-770
[7]  
[Anonymous], 2011, Quantum Computation and Quantum Information: 10th Anniversary Edition
[8]  
[Anonymous], 2016, ARXIV161205695
[9]  
Arunachalam Srinivasan, 2017, ACM SIGACT News, V48, P41, DOI 10.1145/3106700.3106710
[10]   Quantum partially observable Markov decision processes [J].
Barry, Jennifer ;
Barry, Daniel T. ;
Aaronson, Scott .
PHYSICAL REVIEW A, 2014, 90 (03)