Areca-inspired core-shell structured MnO@C composite towards enhanced lithium-ion storage

被引:25
|
作者
Zhu, Lingfeng [1 ]
Wang, Yun [1 ]
Wang, Minji [1 ]
Xiong, Yaping [2 ]
Zhang, Ze [1 ]
Yu, Ji [1 ]
Qu, Yaohui [3 ]
Cai, Jianxin [2 ]
Yang, Zhenyu [1 ,4 ]
机构
[1] Nanchang Univ, Coll Chem, Nanchang 330031, Jiangxi, Peoples R China
[2] Nanchang Univ, Sch Resources Environm & Chem Engn, Nanchang 330031, Jiangxi, Peoples R China
[3] Jiangxi Normal Univ, Sch Phys Commun & Elect, Jiangxi Key Lab Nanomat & Sensors, Nanchang 330022, Jiangxi, Peoples R China
[4] Dongguan Univ Technol, Sch Mat Sci & Engn, Dongguan 523808, Guangdong, Peoples R China
关键词
Conversion-type anode materials; Areca-inspired; Core-shell structure; MnO@C composite; Lithium-ion batteries; ANODE MATERIALS; PERFORMANCE; MICROSPHERES; BIOMASS; DESIGN;
D O I
10.1016/j.carbon.2021.08.081
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
MnO based composites are regarded as advanced conversion-type anode materials for lithium-ion batteries (LIBs) due to the low cost and high theoretical specific capacities (similar to 756 mA h g(-1)). Nevertheless, the undesirable structural stability and sluggish electrochemical reaction kinetics of the electrode materials lead to poor lithium storage performance. Herein, inspired by the structure of areca, the areca-like core-shell MnO@C composites containing of the MnO core and N-doped porous carbon shell are prepared via a biomass-assisted strategy. The formation mechanism of the MnO@C composites with well-defined core-shell structure are successfully clarified through heterogeneous contraction and carbon pyrolysis processes. As anodes for LIBs, the MnO@C composite delivers superior specific capacities of 915.9 and 218.1 mA h g(-1) at 0.1 and 5.0 A g(-1), respectively, and maintains outstanding cycling performance over 900 cycles at 1.0 A g(-1). More importantly, electrochemical kinetics tests further confirm that the improved LIBs capacity mainly originated from the unique areca-like core-shell structure and self-N doped porous carbon shell. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页码:706 / 713
页数:8
相关论文
共 50 条
  • [1] A peapod-inspired MnO@C core-shell design for lithium ion batteries
    Wang, Shengbin
    Xing, Yalan
    Xiao, Changlei
    Xu, Huaizhe
    Zhang, Shichao
    JOURNAL OF POWER SOURCES, 2016, 307 : 11 - 16
  • [2] Preparation of Porous MnO@C Core-Shell Nanowires as Anodes for Lithium-Ion Batteries
    Chen, Shouhui
    Chen, Yaqin
    Zhou, Rihui
    Wu, Jiafeng
    Song, Yonggui
    Li, Ping
    Song, Yonghai
    Wang, Li
    JOURNAL OF NANOMATERIALS, 2016, 2016
  • [3] Synthesis of MnO@C core-shell nanoplates with controllable shell thickness and their electrochemical performance for lithium-ion batteries
    Zhang, Xing
    Xing, Zheng
    Wang, Lili
    Zhu, Yongchun
    Li, Qianwen
    Liang, Jianwen
    Yu, Yang
    Huang, Tao
    Tang, Kaibin
    Qian, Yitai
    Shen, Xiaoyan
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (34) : 17864 - 17869
  • [4] Multiporous core-shell structured MnO@N-Doped carbon towards high-performance lithium-ion batteries
    Lin, Jing
    Yu, Lei
    Sun, Qujiang
    Wang, Fangkuo
    Cheng, Yong
    Wang, Sheng
    Zhang, Xu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (03) : 1837 - 1845
  • [5] MnO/C core-shell nanorods as high capacity anode materials for lithium-ion batteries
    Sun, Bing
    Chen, Zhixing
    Kim, Hyun-Soo
    Ahn, Hyojun
    Wang, Guoxiu
    JOURNAL OF POWER SOURCES, 2011, 196 (06) : 3346 - 3349
  • [6] Rational Design of Core-Shell Structured C@SnO2@CNTs Composite with Enhanced Lithium Storage Performance
    Cheng, Yayi
    Huang, Jianfeng
    Cao, Liyun
    Xie, Hui
    Yu, Fangli
    Xi, Shaohua
    Shi, Bingyao
    Li, Jiayin
    CHEMELECTROCHEM, 2020, 7 (04) : 1016 - 1022
  • [7] Bio-Inspired Core-Shell Structured Electrode Particles with Protective Mechanisms for Lithium-Ion Batteries
    Song, Zelai
    Dong, Taowen
    Chen, Siyan
    Gao, Zhenhai
    SMALL, 2025, 21 (02)
  • [8] High performance porous MnO@C composite anode materials for lithium-ion batteries
    Li, Keyan
    Shua, Fenfen
    Guo, Xinwen
    Xue, Dongfeng
    ELECTROCHIMICA ACTA, 2016, 188 : 793 - 800
  • [9] Facile manufacturing of core-shell MnO@C microspheres toward enhanced electromagnetic wave attenuation
    Mo, Pingping
    Yang, Junru
    Shui, Anze
    Qian, Junjie
    Du, Bin
    Shui, Xin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 971
  • [10] Core-Shell-Structured SiOx-C Composite for Lithium-Ion Battery Anodes
    Zhang, Junying
    Ma, Peipei
    Zhang, Xiaoming
    Liu, Zhi
    Zheng, Jun
    Zuo, Yuhua
    Xue, Chunlai
    Cheng, Buwen
    Li, Chuanbo
    ENERGY TECHNOLOGY, 2019, 7 (04)