共 50 条
Areca-inspired core-shell structured MnO@C composite towards enhanced lithium-ion storage
被引:25
|作者:
Zhu, Lingfeng
[1
]
Wang, Yun
[1
]
Wang, Minji
[1
]
Xiong, Yaping
[2
]
Zhang, Ze
[1
]
Yu, Ji
[1
]
Qu, Yaohui
[3
]
Cai, Jianxin
[2
]
Yang, Zhenyu
[1
,4
]
机构:
[1] Nanchang Univ, Coll Chem, Nanchang 330031, Jiangxi, Peoples R China
[2] Nanchang Univ, Sch Resources Environm & Chem Engn, Nanchang 330031, Jiangxi, Peoples R China
[3] Jiangxi Normal Univ, Sch Phys Commun & Elect, Jiangxi Key Lab Nanomat & Sensors, Nanchang 330022, Jiangxi, Peoples R China
[4] Dongguan Univ Technol, Sch Mat Sci & Engn, Dongguan 523808, Guangdong, Peoples R China
来源:
关键词:
Conversion-type anode materials;
Areca-inspired;
Core-shell structure;
MnO@C composite;
Lithium-ion batteries;
ANODE MATERIALS;
PERFORMANCE;
MICROSPHERES;
BIOMASS;
DESIGN;
D O I:
10.1016/j.carbon.2021.08.081
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
MnO based composites are regarded as advanced conversion-type anode materials for lithium-ion batteries (LIBs) due to the low cost and high theoretical specific capacities (similar to 756 mA h g(-1)). Nevertheless, the undesirable structural stability and sluggish electrochemical reaction kinetics of the electrode materials lead to poor lithium storage performance. Herein, inspired by the structure of areca, the areca-like core-shell MnO@C composites containing of the MnO core and N-doped porous carbon shell are prepared via a biomass-assisted strategy. The formation mechanism of the MnO@C composites with well-defined core-shell structure are successfully clarified through heterogeneous contraction and carbon pyrolysis processes. As anodes for LIBs, the MnO@C composite delivers superior specific capacities of 915.9 and 218.1 mA h g(-1) at 0.1 and 5.0 A g(-1), respectively, and maintains outstanding cycling performance over 900 cycles at 1.0 A g(-1). More importantly, electrochemical kinetics tests further confirm that the improved LIBs capacity mainly originated from the unique areca-like core-shell structure and self-N doped porous carbon shell. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页码:706 / 713
页数:8
相关论文