Existence of Three Nontrivial Smooth Solutions for Nonlinear Resonant Neumann Problems Driven by the p-Laplacian

被引:7
作者
Gasinski, Leszek [1 ]
Papageorgiou, Nikolaos S. [2 ]
机构
[1] Jagiellonian Univ, Inst Comp Sci, PL-30348 Krakow, Poland
[2] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2010年 / 29卷 / 04期
关键词
p-Laplacian; resonance; critical groups; local minimizers; contractible sets; LINEAR ELLIPTIC-EQUATIONS; MULTIPLE SOLUTIONS;
D O I
10.4171/ZAA/1415
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear Neumann elliptic problem driven by the p-Laplacian and with a reaction term which asymptotically at +/-infinity exhibits resonance with respect to the principal eigenvalue lambda(0) = 0. Using variational methods combined with tools from Morse theory, we show that the resonant problem has at least three nontrivial smooth solutions, two of which have constant sign (one positive, the other negative).
引用
收藏
页码:413 / 428
页数:16
相关论文
共 21 条