System identification of nonlinear state-space models

被引:418
|
作者
Schon, Thomas B. [1 ]
Wills, Adrian [2 ]
Ninness, Brett [2 ]
机构
[1] Linkoping Univ, Div Automat Control, SE-58183 Linkoping, Sweden
[2] Univ Newcastle, Sch Elect Engn & Comp Sci, Callaghan, NSW 2308, Australia
基金
瑞典研究理事会; 澳大利亚研究理事会;
关键词
System identification; Nonlinear models; Dynamic systems; Monte Carlo method; Smoothing filters; Expectation maximisation algorithm; Particle methods; PARAMETER-ESTIMATION; MAXIMUM-LIKELIHOOD; PARTICLE METHODS;
D O I
10.1016/j.automatica.2010.10.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with the parameter estimation of a general class of nonlinear dynamic systems in state-space form. More specifically, a Maximum Likelihood (ML) framework is employed and an Expectation Maximisation (EM) algorithm is derived to compute these ML estimates. The Expectation (E) step involves solving a nonlinear state estimation problem, where the smoothed estimates of the states are required. This problem lends itself perfectly to the particle smoother, which provides arbitrarily good estimates. The maximisation (M) step is solved using standard techniques from numerical optimisation theory. Simulation examples demonstrate the efficacy of our proposed solution. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:39 / 49
页数:11
相关论文
共 50 条
  • [1] Variational system identification for nonlinear state-space models
    Courts, Jarrad
    Wills, Adrian G.
    Schon, Thomas B.
    Ninness, Brett
    AUTOMATICA, 2023, 147
  • [2] Further results on "System identification of nonlinear state-space models"
    Liu, Xin
    Lou, Sicheng
    Dai, Wei
    AUTOMATICA, 2023, 148
  • [3] Comparison of some initialisation methods for the identification of nonlinear state-space models
    Van Mulders, Anne
    Vanbeylen, Laurent
    2013 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2013, : 807 - 811
  • [4] Review of the application of modeling and estimation method in system identification for nonlinear state-space models
    Li, Xiaonan
    Ma, Ping
    Chao, Tao
    Yang, Ming
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2024, 15 (05)
  • [5] Robust identification approach for nonlinear state-space models
    Liu, Xin
    Yang, Xianqiang
    NEUROCOMPUTING, 2019, 333 : 329 - 338
  • [6] Identification of Mixed Linear/Nonlinear State-Space Models
    Lindsten, Fredrik
    Schon, Thomas B.
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 6377 - 6382
  • [7] Nonlinear state-space system identification with robust laplace model
    Liu, Xin
    Yang, Xianqiang
    Liu, Xiaofeng
    INTERNATIONAL JOURNAL OF CONTROL, 2021, 94 (06) : 1492 - 1501
  • [8] Hysteresis Identification Using Nonlinear State-Space Models
    Noel, J. P.
    Esfahani, A. F.
    Kerschen, G.
    Schoukens, J.
    NONLINEAR DYNAMICS, VOL 1, 34TH IMAC, 2016, : 323 - 338
  • [9] Identification of State-space Models by Modified Nonlinear LS Optimization Method
    Zhong Lusheng
    Yang Hui
    Lu Rongxiu
    Sun Baohua
    Meng Shasha
    CCDC 2009: 21ST CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, PROCEEDINGS, 2009, : 1184 - 1187
  • [10] Robust Optimization Method for the Identification of Nonlinear State-Space Models
    Van Mulders, Anne
    Vanbeylen, Laurent
    Schoukens, Johan
    2012 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2012, : 1423 - 1428