System identification of nonlinear state-space models

被引:433
作者
Schon, Thomas B. [1 ]
Wills, Adrian [2 ]
Ninness, Brett [2 ]
机构
[1] Linkoping Univ, Div Automat Control, SE-58183 Linkoping, Sweden
[2] Univ Newcastle, Sch Elect Engn & Comp Sci, Callaghan, NSW 2308, Australia
基金
瑞典研究理事会; 澳大利亚研究理事会;
关键词
System identification; Nonlinear models; Dynamic systems; Monte Carlo method; Smoothing filters; Expectation maximisation algorithm; Particle methods; PARAMETER-ESTIMATION; MAXIMUM-LIKELIHOOD; PARTICLE METHODS;
D O I
10.1016/j.automatica.2010.10.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is concerned with the parameter estimation of a general class of nonlinear dynamic systems in state-space form. More specifically, a Maximum Likelihood (ML) framework is employed and an Expectation Maximisation (EM) algorithm is derived to compute these ML estimates. The Expectation (E) step involves solving a nonlinear state estimation problem, where the smoothed estimates of the states are required. This problem lends itself perfectly to the particle smoother, which provides arbitrarily good estimates. The maximisation (M) step is solved using standard techniques from numerical optimisation theory. Simulation examples demonstrate the efficacy of our proposed solution. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:39 / 49
页数:11
相关论文
共 49 条
[1]  
Anderson B.D.O., 1979, Optimal Filtering
[2]   Particle methods for change detection, system identification, and control [J].
Andrieu, C ;
Doucet, A ;
Singh, SS ;
Tadic, VB .
PROCEEDINGS OF THE IEEE, 2004, 92 (03) :423-438
[3]  
[Anonymous], 2001, Sequential Monte Carlo methods in practice
[4]  
[Anonymous], 2008, EM ALGORITHM EXTENSI
[5]  
[Anonymous], 1990, Nonlinear System Analysis and Identification from Random Data
[6]  
[Anonymous], SEQUENTIAL SMOOTHING
[7]  
Bohlin Torsten P, 2006, ADV IND CON
[8]   2-FILTER FORMULAS FOR DISCRETE-TIME NONLINEAR BAYESIAN SMOOTHING [J].
BRESLER, Y .
INTERNATIONAL JOURNAL OF CONTROL, 1986, 43 (02) :629-641
[9]   Smoothing algorithms for state-space models [J].
Briers, Mark ;
Doucet, Arnaud ;
Maskell, Simon .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2010, 62 (01) :61-89
[10]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38