Application of Deep Learning on UAV-Based Aerial Images for Flood Detection

被引:52
|
作者
Munawar, Hafiz Suliman [1 ]
Ullah, Fahim [2 ]
Qayyum, Siddra [1 ]
Heravi, Amirhossein [2 ]
机构
[1] Univ New South Wales, Sch Built Environm, Sydney, NSW 2052, Australia
[2] Univ Southern Queensland, Sch Civil Engn & Surveying, Springfield, Qld 4300, Australia
来源
SMART CITIES | 2021年 / 4卷 / 03期
关键词
flood detection; deep learning; landmarks detection; UAV dataset; disaster management; MODEL; TRANSFORM; SELECTION; INPUT; CITY;
D O I
10.3390/smartcities4030065
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Floods are one of the most fatal and devastating disasters, instigating an immense loss of human lives and damage to property, infrastructure, and agricultural lands. To cater to this, there is a need to develop and implement real-time flood management systems that could instantly detect flooded regions to initiate relief activities as early as possible. Current imaging systems, relying on satellites, have demonstrated low accuracy and delayed response, making them unreliable and impractical to be used in emergency responses to natural disasters such as flooding. This research employs Unmanned Aerial Vehicles (UAVs) to develop an automated imaging system that can identify inundated areas from aerial images. The Haar cascade classifier was explored in the case study to detect landmarks such as roads and buildings from the aerial images captured by UAVs and identify flooded areas. The extracted landmarks are added to the training dataset that is used to train a deep learning algorithm. Experimental results show that buildings and roads can be detected from the images with 91% and 94% accuracy, respectively. The overall accuracy of 91% is recorded in classifying flooded and non-flooded regions from the input case study images. The system has shown promising results on test images belonging to both pre- and post-flood classes. The flood relief and rescue workers can quickly locate flooded regions and rescue stranded people using this system. Such real-time flood inundation systems will help transform the disaster management systems in line with modern smart cities initiatives.
引用
收藏
页码:1220 / 1242
页数:23
相关论文
共 50 条
  • [31] Research progress on deep learning methods for object detection and semantic segmentation in UAV aerial images
    Luo X.
    Wu Y.
    Chen J.
    Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2024, 45 (06):
  • [32] UAV-Based Vehicle Detection by Multi-source Images
    Jiang, Shangjie
    Luo, Bin
    Liu, Jun
    Zhang, Yun
    Zhang, LiangPei
    COMPUTER VISION, PT III, 2017, 773 : 38 - 49
  • [33] PDS-UAV: A Deep Learning-Based Pothole Detection System Using Unmanned Aerial Vehicle Images
    Alzamzami, Ohoud
    Babour, Amal
    Baalawi, Waad
    Al Khuzayem, Lama
    SUSTAINABILITY, 2024, 16 (21)
  • [34] A survey of small object detection based on deep learning in aerial images
    Hua, Wei
    Chen, Qili
    ARTIFICIAL INTELLIGENCE REVIEW, 2025, 58 (06)
  • [35] Deep Reinforcement Learning for UAV-Based SDWSN Data Collection
    Karegar, Pejman A.
    Al-Hamid, Duaa Zuhair
    Chong, Peter Han Joo
    FUTURE INTERNET, 2024, 16 (11)
  • [36] UAV-Based Situational Awareness System Using Deep Learning
    Geraldes, Ruben
    Goncalves, Artur
    Lai, Tin
    Villerabel, Mathias
    Deng, Wenlong
    Salta, Ana
    Nakayama, Kotaro
    Matsuo, Yutaka
    Prendinger, Helmut
    IEEE ACCESS, 2019, 7 : 122583 - 122594
  • [37] Automated Aerial Triangulation for UAV-Based Mapping
    He, Fangning
    Zhou, Tian
    Xiong, Weifeng
    Hasheminnasab, Seyyed Meghdad
    Habib, Ayman
    REMOTE SENSING, 2018, 10 (12)
  • [38] Gesture Recognition for UAV-based Rescue Operation based on Deep Learning
    Liu, Chang
    Sziranyi, Tamas
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND VISION ENGINEERING (IMPROVE), 2021, : 180 - 187
  • [39] Classification of Maize Lodging Extents Using Deep Learning Algorithms by UAV-Based RGB and Multispectral Images
    Yang, Xin
    Gao, Shichen
    Sun, Qian
    Gu, Xiaohe
    Chen, Tianen
    Zhou, Jingping
    Pan, Yuchun
    AGRICULTURE-BASEL, 2022, 12 (07):
  • [40] Plant height measurement using UAV-based aerial RGB and LiDAR images in soybean
    Pun Magar, Lalit
    Sandifer, Jeremy
    Khatri, Deepak
    Poudel, Sudip
    Kc, Suraj
    Gyawali, Buddhi
    Gebremedhin, Maheteme
    Chiluwal, Anuj
    FRONTIERS IN PLANT SCIENCE, 2025, 16