LogicSNN: A Unified Spiking Neural Networks Logical Operation Paradigm

被引:10
作者
Mo, Lingfei [1 ]
Wang, Minghao [1 ]
机构
[1] Southeast Univ, Sch Instrument Sci & Engn, FutureX Lab, Nanjing 210096, Peoples R China
关键词
spiking neural networks; logical operation; spike-timing-dependent plasticity;
D O I
10.3390/electronics10172123
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
LogicSNN, a unified spiking neural networks (SNN) logical operation paradigm is proposed in this paper. First, we define the logical variables under the semantics of SNN. Then, we design the network structure of this paradigm and use spike-timing-dependent plasticity for training. According to this paradigm, six kinds of basic SNN binary logical operation modules and three kinds of combined logical networks based on these basic modules are implemented. Through these experiments, the rationality, cascading characteristics and the potential of building large-scale network of this paradigm are verified. This study fills in the blanks of the logical operation of SNN and provides a possible way to realize more complex machine learning capabilities.
引用
收藏
页数:19
相关论文
共 20 条
[1]  
Adonias G. L., 2019, P 4 WORKSH MOL COMM
[2]   Reconfigurable Filtering of Neuro-Spike Communications Using Synthetically Engineered Logic Circuits [J].
Adonias, Geoflly L. ;
Siljak, Harun ;
Barros, Michael Taynnan ;
Marchetti, Nicola ;
White, Mark ;
Balasubramaniam, Sasitharan .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2020, 14
[3]   Utilizing Neurons for Digital Logic Circuits: A Molecular Communications Analysis [J].
Adonias, Geoflly L. ;
Yastrebova, Anastasia ;
Barros, Michael Taynnan ;
Koucheryavy, Yevgeni ;
Cleary, Frances ;
Balasubramaniam, Sasitharan .
IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2020, 19 (02) :224-236
[4]  
Boole G., 1854, INVESTIGATION LAWS T, DOI DOI 10.1017/CBO9780511693090
[5]   A multi-scale brain map derived from whole-brain volumetric reconstructions [J].
Brittin, Christopher A. ;
Cook, Steven J. ;
Hall, David H. ;
Emmons, Scott W. ;
Cohen, Netta .
NATURE, 2021, 591 (7848) :105-+
[6]   Spike timing-dependent plasticity: A Hebbian learning rule [J].
Caporale, Natalia ;
Dan, Yang .
ANNUAL REVIEW OF NEUROSCIENCE, 2008, 31 :25-46
[7]   Whole-animal connectomes of both Caenorhabditis elegans sexes [J].
Cook, Steven J. ;
Jarrell, Travis A. ;
Brittin, Christopher A. ;
Wang, Yi ;
Bloniarz, Adam E. ;
Yakovlev, Maksim A. ;
Nguyen, Ken C. Q. ;
Tang, Leo T. -H. ;
Bayer, Emily A. ;
Duerr, Janet S. ;
Bulow, Hannes E. ;
Hobert, Oliver ;
Hall, David H. ;
Emmons, Scott W. .
NATURE, 2019, 571 (7763) :63-+
[8]  
Gerstner W, 2014, NEURONAL DYNAMICS: FROM SINGLE NEURONS TO NETWORKS AND MODELS OF COGNITION, P1, DOI 10.1017/CBO9781107447615
[9]   A computational paradigm for dynamic logic-gates in neuronal activity [J].
Goldental, Amir ;
Guberman, Shoshana ;
Vardi, Roni ;
Kanter, Ido .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2014, 8
[10]   The Brian simulator [J].
Goodman, Dan F. M. ;
Brette, Romain .
FRONTIERS IN NEUROSCIENCE, 2009, 3 (02) :192-197