Quantum-confined semiconductor nanorods are used as highly polarized nanoemitters to actively control the polarization state of microcavity photons. A wet-chemical method to tangentially align CdSe nanorods on a polymer surface is applied to a spherical Rapproximate to2lambda-microcavity. The cavity emission is studied by imaging spectroscopy and polarization-sensitive mode mapping. The efficient confinement of photons spontaneously emitted by nanorods into single transverse electric (TE) cavity modes is achieved while transverse magnetic modes are suppressed. A microscopic tricolor TE-emitter operating at room temperature in the visible spectral range is demonstrated. (C) 2003 American Institute of Physics.