Influences of neutron source spectrum and thermal neutron scattering law data on the MCNPX simulation of a cyclotron-based neutron field for boron neutron capture therapy

被引:3
|
作者
Yonai, Shunsuke [1 ]
Baba, Mamoru [1 ]
Itoga, Toshiro [1 ]
Nakamura, Takashi [1 ]
Yokobori, Hitoshi [2 ]
Tahara, Yoshihisa [3 ]
机构
[1] Tohoku Univ, Ctr Cyclotron & Radioisotope, Aoba Ku, Sendai, Miyagi 9808578, Japan
[2] Adv Reactor Technol Co Ltd, Minato Ku, Tokyo 1080075, Japan
[3] Engn Dev Ltd, Nishi Ku, Yokohama, Kanagawa 2208401, Japan
关键词
BNCT; cyclotron; neutron energy spectrum; thermal neutron distribution; TEPC; MCNPX; LA150; S(alpha; beta);
D O I
10.3327/jnst.44.1361
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
In our previous study, the simulation of a cyclotron-based neutron field for boron neutron capture therapy (BNCT) using a (p,n) spallation source with the MCNPX code was validated through measurements of the neutron energy spectrum behind the moderator assembly and the thermal neutron distribution in an acrylic phantom using reaction rates of Au-198. These validations showed that the simulation generally well reproduced the measurements. However, some discrepancies between the measurements and the calculation remained for clinical trials. In this paper, we investigated the influences of neutron source spectrum and thermal neutron scattering law data in the simulation to resolve those discrepancies. We also compared measured and calculated neutron doses behind the moderator assembly with results obtained using a tissue equivalent proportional counter. We clarified that the neutron source spectrum calculated using the LA150 data led to the overestimation of high-energy neutrons in a phantom, but this overestimation did not significantly affect the neutron dose distribution in a phantom, because a dominant part of the absorbed dose is due to neutrons of energies below 1 MeV. The study of the influence of neutron scattering law data in a phantom also indicated that the use of selected S(alpha,beta) data led to an improvement in the simulation of thermal neutron behavior.
引用
收藏
页码:1361 / 1367
页数:7
相关论文
共 50 条
  • [1] GE PETtrace cyclotron as a neutron source for boron neutron capture therapy
    Bosko, A
    Zhilchenkov, D
    Reece, WD
    APPLIED RADIATION AND ISOTOPES, 2004, 61 (05) : 1057 - 1062
  • [2] Characteristics comparison between a cyclotron-based neutron source and KUR-HWNIF for boron neutron capture therapy
    Tanaka, H.
    Sakurai, Y.
    Suzuki, M.
    Masunaga, S.
    Kinashi, Y.
    Kashino, G.
    Liu, Y.
    Mitsumoto, T.
    Yajima, S.
    Tsutsui, H.
    Maruhashi, A.
    Ono, K.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2009, 267 (11) : 1970 - 1977
  • [3] Cyclotron-Based Neutron Source For BNCT
    Mitsumoto, T.
    Yajima, S.
    Tsutsui, H.
    Ogasawara, T.
    Fujita, K.
    Tanaka, H.
    Sakurai, Y.
    Maruhashi, A.
    APPLICATION OF ACCELERATORS IN RESEARCH AND INDUSTRY, 2013, 1525 : 319 - 322
  • [4] Microdosimetry of an accelerator based thermal neutron field for Boron Neutron Capture Therapy
    Selva, A.
    Bellan, L.
    Bianchi, A.
    Giustiniani, G.
    Colautti, P.
    Fagotti, E.
    Pisent, A.
    Conte, V.
    APPLIED RADIATION AND ISOTOPES, 2022, 182
  • [5] Accelerator based epithermal neutron source for clinical boron neutron capture therapy
    Hu, Naonori
    Tanaka, Hiroki
    Akita, Kazuhiko
    Kakino, Ryo
    Aihara, Teruhito
    Nihei, Keiji
    Ono, Koji
    JOURNAL OF NEUTRON RESEARCH, 2022, 24 (3-4) : 359 - 366
  • [6] Accelerator-based neutron source for boron neutron capture therapy
    Ivanov, A. A.
    Smirnov, A. N.
    Taskaev, S. Yu
    Bayanov, B. F.
    Belchenko, Yu, I
    Davydenko, V., I
    Dunaevsky, A.
    Emelev, I. S.
    Kasatov, D. A.
    Makarov, A. N.
    Meekins, M.
    Kuksanov, N. K.
    Popov, S. S.
    Salimov, R. A.
    Sanin, A. L.
    Sorokin, I. N.
    Sycheva, T., V
    Shudlo, I. M.
    Vorob'ev, D. S.
    Cherepkov, V. G.
    Fadeev, S. N.
    PHYSICS-USPEKHI, 2022, 65 (08) : 834 - 851
  • [7] Evaluation of the characteristics of the neutron beam of a linac-based neutron source for boron neutron capture therapy
    Kumada H.
    Takada K.
    Tanaka S.
    Matsumoto Y.
    Naito F.
    Kurihara T.
    Sugimura T.
    Sato M.
    Matsumura A.
    Sakurai H.
    Sakae T.
    Applied Radiation and Isotopes, 2020, 165
  • [8] Evaluation of the characteristics of the neutron beam of a linac-based neutron source for boron neutron capture therapy
    Kumada, Hiroaki
    Takada, Kenta
    Tanaka, Susumu
    Matsumoto, Yoshitaka
    Naito, Fujio
    Kurihara, Toshikazu
    Sugimura, Takashi
    Sato, Masaharu
    Matsumura, Akira
    Sakurai, Hideyuki
    Sakae, Takeji
    APPLIED RADIATION AND ISOTOPES, 2020, 165
  • [9] Benchmark experiments for cyclotron-based neutron source for BNCT
    Yonai, S
    Itoga, T
    Baba, M
    Nakamura, T
    Yokobori, H
    Tahara, Y
    APPLIED RADIATION AND ISOTOPES, 2004, 61 (05) : 997 - 1001
  • [10] Thermal neutron irradiation field design for boron neutron capture therapy of human explanted liver
    Bortolussi, S.
    Altieri, S.
    MEDICAL PHYSICS, 2007, 34 (12) : 4700 - 4705