A Triangle Process on Regular Graphs

被引:0
作者
Cooper, Colin [1 ]
Dyer, Martin [2 ]
Greenhill, Catherine [3 ]
机构
[1] Kings Coll London, Dept Informat, London WC2R 2LS, England
[2] Univ Leeds, Sch Comp, Leeds LS2 9JT, W Yorkshire, England
[3] UNSW Sydney, Sch Math & Stat, Kensington, NSW 2052, Australia
来源
COMBINATORIAL ALGORITHMS, IWOCA 2021 | 2021年 / 12757卷
基金
英国工程与自然科学研究理事会;
关键词
Regular graphs; Triangles; Markov chains; Irreducibility; MARKOV-CHAIN;
D O I
10.1007/978-3-030-79987-8_22
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Switches are operations which make local changes to the edges of a graph, usually with the aim of preserving the vertex degrees. We study a restricted set of switches, called triangle switches. Each triangle switch creates or deletes at least one triangle. Triangle switches can be used to define Markov chains which generate graphs with a given degree sequence and with many more triangles (3-cycles) than is typical in a uniformly random graph with the same degrees. We show that the set of triangle switches connects the set of all d-regular graphs on n vertices, for all d >= 3. Hence, any Markov chain which assigns positive probability to all triangle switches is irreducible on these graphs. We also investigate this question for 2-regular graphs.
引用
收藏
页码:310 / 323
页数:14
相关论文
共 26 条
[1]  
Allen-Zhu Z., 2018, P 27 ANN ACM SIAM S, P259
[2]   Rapid mixing of the switch Markov chain for strongly stable degree sequences [J].
Amanatidis, Georgios ;
Kleer, Pieter .
RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (03) :637-657
[3]  
[Anonymous], 2000, INTRO GRAPH THEORY
[4]  
[Anonymous], 2011, Random Graphs
[5]   A Sequential Algorithm for Generating Random Graphs [J].
Bayati, Mohsen ;
Kim, Jeong Han ;
Saberi, Amin .
ALGORITHMICA, 2010, 58 (04) :860-910
[6]  
Cooper C., 2020, ARXIV201212972
[7]  
Cooper C., 2019, ARXIV190504490
[8]   Sampling regular graphs and a peer-to-peer network [J].
Cooper, Colin ;
Dyer, Martin ;
Greenhill, Catherine .
COMBINATORICS PROBABILITY & COMPUTING, 2007, 16 (04) :557-593
[9]   The flip Markov chain for connected regular graphs [J].
Cooper, Colin ;
Dyer, Martin ;
Greenhill, Catherine ;
Handley, Andrew .
DISCRETE APPLIED MATHEMATICS, 2019, 254 :56-79
[10]  
Erd6s P., 1960, MAT LAPOK, V11, P264