A Triangle Process on Regular Graphs

被引:0
作者
Cooper, Colin [1 ]
Dyer, Martin [2 ]
Greenhill, Catherine [3 ]
机构
[1] Kings Coll London, Dept Informat, London WC2R 2LS, England
[2] Univ Leeds, Sch Comp, Leeds LS2 9JT, W Yorkshire, England
[3] UNSW Sydney, Sch Math & Stat, Kensington, NSW 2052, Australia
来源
COMBINATORIAL ALGORITHMS, IWOCA 2021 | 2021年 / 12757卷
基金
英国工程与自然科学研究理事会;
关键词
Regular graphs; Triangles; Markov chains; Irreducibility; MARKOV-CHAIN;
D O I
10.1007/978-3-030-79987-8_22
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Switches are operations which make local changes to the edges of a graph, usually with the aim of preserving the vertex degrees. We study a restricted set of switches, called triangle switches. Each triangle switch creates or deletes at least one triangle. Triangle switches can be used to define Markov chains which generate graphs with a given degree sequence and with many more triangles (3-cycles) than is typical in a uniformly random graph with the same degrees. We show that the set of triangle switches connects the set of all d-regular graphs on n vertices, for all d >= 3. Hence, any Markov chain which assigns positive probability to all triangle switches is irreducible on these graphs. We also investigate this question for 2-regular graphs.
引用
收藏
页码:310 / 323
页数:14
相关论文
共 26 条
  • [1] Allen-Zhu Z., 2018, P 27 ANN ACM SIAM S, P259
  • [2] Rapid mixing of the switch Markov chain for strongly stable degree sequences
    Amanatidis, Georgios
    Kleer, Pieter
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (03) : 637 - 657
  • [3] [Anonymous], 2000, INTRO GRAPH THEORY
  • [4] [Anonymous], 2005, PROC 17 ANN ACM S PA
  • [5] A Sequential Algorithm for Generating Random Graphs
    Bayati, Mohsen
    Kim, Jeong Han
    Saberi, Amin
    [J]. ALGORITHMICA, 2010, 58 (04) : 860 - 910
  • [6] Bollobas B., 2001, RANDOM GRAPHS
  • [7] Cooper C., 2020, ARXIV201212972
  • [8] Cooper C., 2019, ARXIV190504490
  • [9] Sampling regular graphs and a peer-to-peer network
    Cooper, Colin
    Dyer, Martin
    Greenhill, Catherine
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2007, 16 (04) : 557 - 593
  • [10] The flip Markov chain for connected regular graphs
    Cooper, Colin
    Dyer, Martin
    Greenhill, Catherine
    Handley, Andrew
    [J]. DISCRETE APPLIED MATHEMATICS, 2019, 254 : 56 - 79