A geometric analysis of the SIRS epidemiological model on a homogeneous network

被引:20
作者
Jardon-Kojakhmetov, Hildeberto [1 ]
Kuehn, Christian [2 ]
Pugliese, Andrea [3 ]
Sensi, Mattia [3 ]
机构
[1] Univ Groningen, Fac Sci & Engn, Groningen, Netherlands
[2] Tech Univ Munich, Dept Math, Munich, Germany
[3] Univ Trento, Trento, Italy
关键词
Fast-slow system; Epidemic model; Non-standard form; Epidemics on networks; Bifurcation analysis; SINGULAR PERTURBATION PROBLEMS; EXCHANGE LEMMAS; DYNAMICS; CELL;
D O I
10.1007/s00285-021-01664-5
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study a fast-slow version of an SIRS epidemiological model on homogeneous graphs, obtained through the application of the moment closure method. We use GSPT to study the model, taking into account that the infection period is much shorter than the average duration of immunity. We show that the dynamics occurs through a sequence of fast and slow flows, that can be described through 2-dimensional maps that, under some assumptions, can be approximated as 1-dimensional maps. Using this method, together with numerical bifurcation tools, we show that the model can give rise to periodic solutions, differently from the corresponding model based on homogeneous mixing.
引用
收藏
页数:38
相关论文
共 44 条
[1]   Solvability of implicit final size equations for SIR epidemic models [J].
Bidari, Subekshya ;
Chen, Xinying ;
Peters, Daniel ;
Pittman, Dylanger ;
Simon, Peter L. .
MATHEMATICAL BIOSCIENCES, 2016, 282 :181-190
[2]   The forced van der Pol equation II: Canards in the reduced system [J].
Bold, K ;
Edwards, C ;
Guckenheimer, J ;
Guharay, S ;
Hoffman, K ;
Hubbard, J ;
Oliva, R ;
Weckesser, W .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2003, 2 (04) :570-608
[3]   A singular perturbation approach to epidemics of vector-transmitted diseases [J].
Brauer, Fred .
INFECTIOUS DISEASE MODELLING, 2019, 4 :115-123
[4]   Thresholds for Epidemic Spreading in Networks [J].
Castellano, Claudio ;
Pastor-Satorras, Romualdo .
PHYSICAL REVIEW LETTERS, 2010, 105 (21)
[5]   THE INFLUENCE OF INCREASING LIFE EXPECTANCY ON THE DYNAMICS OF SIRS SYSTEMS WITH IMMUNE BOOSTING [J].
Dafilis, M. P. ;
Frascoli, F. ;
Wood, J. G. ;
Mccaw, J. M. .
ANZIAM JOURNAL, 2012, 54 (1-2) :50-63
[7]   The entry-exit function and geometric singular perturbation theory [J].
De Maesschalck, Peter ;
Schecter, Stephen .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (08) :6697-6715
[8]   New features of the software MatCont for bifurcation analysis of dynamical systems [J].
Dhooge, A. ;
Govaerts, W. ;
Kuznetsov, Yu. A. ;
Meijer, H. G. E. ;
Sautois, B. .
MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2008, 14 (02) :147-175
[9]   The construction of next-generation matrices for compartmental epidemic models [J].
Diekmann, O. ;
Heesterbeek, J. A. P. ;
Roberts, M. G. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2010, 7 (47) :873-885
[10]  
DIEKMANN O, 1990, J MATH BIOL, V28, P365