Complex WKB analysis of energy-level degeneracies of non-Hermitian Hamiltonians

被引:72
作者
Bender, CM [1 ]
Berry, M
Meisinger, PN
Savage, VM
Simsek, M
机构
[1] Washington Univ, Dept Phys, St Louis, MO 63130 USA
[2] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
[3] Gazi Univ, Fen Edebiyat Fak, Fiz Bolumu, TR-06500 Teknikokullar Ankara, Turkey
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 06期
关键词
D O I
10.1088/0305-4470/34/6/101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Hamiltonian H = p(2)+x(4)+iAx, where A is a real parameter, is investigated. The spectrum of H is discrete and entirely real and positive for \A\ < 3.169. As \A\ increases past this point, adjacent pairs of energy levels coalesce and then become complex, starting with the lowest-lying energy levels. For large energies, the values of A at which this merging occurs scale as the three-quarters power of the energy. That is, as \A\ --> infinity and E --> infinity, at the points of coalescence the ratio a = \A\E-3/4 approaches a constant whose numerical value is a(crit) = 1.1838363072914. Conventional WKB theory determines the high-lying energy levels but cannot be used to calculate a(crit). This critical value is predicted exactly by complex WKB theory.
引用
收藏
页码:L31 / L36
页数:6
相关论文
共 15 条
  • [1] Bender C M, 1978, ADV MATH METHODS SCI
  • [2] Real spectra in non-Hermitian Hamiltonians having PT symmetry
    Bender, CM
    Boettcher, S
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (24) : 5243 - 5246
  • [3] PT-symmetric quantum mechanics
    Bender, CM
    Boettcher, S
    Meisinger, PN
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) : 2201 - 2229
  • [4] BENDER CM, 2001, IN PRESS J PHYS A
  • [5] BENDER CM, 1978, ADV MATH METHODS SCI, pCH10
  • [6] SEMICLASSICAL APPROXIMATIONS IN WAVE MECHANICS
    BERRY, MV
    MOUNT, KE
    [J]. REPORTS ON PROGRESS IN PHYSICS, 1972, 35 (04) : 315 - +
  • [7] Delabaere E, 1998, PHYS LETT A, V250, P29, DOI 10.1016/S0375-9601(98)00792-0
  • [8] Eigenvalues of complex Hamiltonians with PT-symmetry. I
    Delabaere, E
    Pham, F
    [J]. PHYSICS LETTERS A, 1998, 250 (1-3) : 25 - 28
  • [9] Exact semiclassical expansions for one-dimensional quantum oscillators
    Delabaere, E
    Dillinger, H
    Pham, F
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (12) : 6126 - 6184
  • [10] Spectral analysis of the complex cubic oscillator
    Delabaere, E
    Trinh, DT
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (48): : 8771 - 8796