Kinetically Induced Fine Secondary α-Ti Phase Formation in a Novel As-Cast Titanium Alloy

被引:5
作者
Liang, Zhi [1 ,2 ]
Miao, Jiashi [1 ]
Huang, Xuejun [1 ]
Zhang, Fan [3 ]
Williams, Jim C. [1 ]
Luo, Alan A. [1 ,4 ]
机构
[1] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA
[2] QuesTek LLC, 1820 Ridge Ave, Evanston, IL 60201 USA
[3] NIST, Mat Measurement Sci Div, Mat Measurement Lab, 100 Bur Dr, Gaithersburg, MD 20899 USA
[4] Ohio State Univ, Dept Integrated Syst Engn, Columbus, OH 43210 USA
来源
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE | 2022年 / 53卷 / 10期
关键词
OMEGA PHASE; DIFFUSION; PRECIPITATION; ALUMINUM; MICROSTRUCTURE; EVOLUTION; STRENGTH; CALPHAD;
D O I
10.1007/s11661-022-06775-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The formation of fine secondary hexagonal close packed (HCP) alpha-Ti precipitates provides major strengthening in a new Ti-6Al-5Fe-0.05B-0.05C (mass fractions in pct) cast alloy. The phase transformation mechanisms from the body-centered cubic (BCC) beta-Ti matrix to fine alpha phase in this new alpha-beta titanium alloy were investigated experimentally and computationally using CALculation of PHAse Diagram (CALPHAD)-based thermodynamic and kinetic models. The discrete distribution of alpha precipitates was observed in the as-cast alloy with evidence of strong Fe partitioning. Two main size groups of alpha precipitates and the Fe partitioning were characterized using scanning electron microscopy, scanning transmission electron microscopy, and synchrotron-based small-angle X-ray scattering techniques. A hypothesis of Fe-partitioning driven alpha precipitate nucleation and growth was validated by precipitation simulation using TC-PRISMA with customized thermodynamic and kinetic descriptions. These results suggested a new titanium alloy design route involving high-mobility elements (enhancing fine secondary alpha precipitates) and demonstrated the capability of CALPHAD-based modeling in titanium alloy design.
引用
收藏
页码:3536 / 3546
页数:11
相关论文
共 36 条
[1]  
Aaronson HI, 2010, MECHANISMS OF DIFFUSIONAL PHASE TRANSFORMATIONS IN METALS AND ALLOYS, P1, DOI 10.1201/b15829
[2]  
AKIMOVA IA, 1983, FIZ MET METALLOVED+, V56, P1225
[3]  
[Anonymous], 2020, THERMOCALC PRECIPITA
[4]   ANOMALOUS DIFFUSION OF ALUMINUM IN BETA-TITANIUM [J].
ARAKI, H ;
YAMANE, T ;
MINAMINO, Y ;
SAJI, S ;
HANA, Y ;
JUNG, SB .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1994, 25 (04) :874-876
[5]   Perspectives on Titanium Science and Technology [J].
Banerjee, Dipankar ;
Williams, J. C. .
ACTA MATERIALIA, 2013, 61 (03) :844-879
[6]  
BORG RJ, 1960, T AM I MIN MET ENG, V218, P980
[7]   Pseudospinodal mechanism for fine α/β microstructures in β-Ti alloys [J].
Boyne, A. ;
Wang, D. ;
Shi, R. P. ;
Zheng, Y. ;
Behera, A. ;
Nag, S. ;
Tiley, J. S. ;
Fraser, H. L. ;
Banerjee, R. ;
Wang, Y. .
ACTA MATERIALIA, 2014, 64 :188-197
[8]  
Froes F.H., 2015, TITANIUM PHYS METALL
[9]   DIFFUSION IN TITANIUM AND TITANIUM-NIOBIUM ALLOYS [J].
GIBBS, GB ;
TOMLIN, DH ;
GRAHAM, D .
PHILOSOPHICAL MAGAZINE, 1963, 8 (92) :1269-+
[10]   Predicting grain structure in high pressure die casting of aluminum alloys: A coupled cellular automaton and process model [J].
Gu, Cheng ;
Lu, Yan ;
Cinkilic, Emre ;
Miao, Jiashi ;
Klarner, Andrew ;
Yan, Xinyan ;
Luo, Alan A. .
COMPUTATIONAL MATERIALS SCIENCE, 2019, 161 :64-75