Fully Automated Multi-heartbeat Echocardiography Video Segmentation and Motion Tracking

被引:5
作者
Chen, Yida [1 ]
Zhang, Xiaoyan [2 ]
Haggerty, Christopher M. [2 ]
Stough, Joshua, V [1 ]
机构
[1] Bucknell Univ, Comp Sci, Lewisburg, PA 17837 USA
[2] Geisinger, Translat Data Sci & Informat, Danville, PA USA
来源
MEDICAL IMAGING 2022: IMAGE PROCESSING | 2022年 / 12032卷
关键词
Echocardiography; Segmentation; Quantitative Image Analysis; Neural Networks; VENTRICULAR EJECTION FRACTION; VOLUMES;
D O I
10.1117/12.2607871
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Neural network-based video segmentation has proven effective in producing temporally-coherent segmentation and motion tracking of heart substructures in echocardiography. However, prior methods confine analysis to half-heartbeat systolic phase clips from end-diastole (ED) to end-systole (ES), requiring the specification of these frames in the video and limiting clinical applicability. Here we introduce CLAS-FV, a fully automated framework that extends upon this prior work, providing joint semantic segmentation and motion tracking in multi-beat echocardiograms. Our framework first employs a modified R2+1D ResNet stem, which is efficient in encoding spatiotemporal features, and further leverages sliding windows for both training and test time augmentation to accommodate the full cardiac cycle. First, through 10-fold cross-validation on the half-beat CAMUS dataset, we show that the R2+1D-based stem outperforms the prior 3D U-Net both in Dice overlap for all substructures, and in derived clinical indices of ED and ES ventricular volumes and ejection fraction (EF). Next, we use the large clinical EchoNet-Dynamic dataset to extend our framework to full multi-beat video segmentation. We obtain mean Dice overlap of 0.94/0.91 on left ventricle endocardium in ED/ES phases, and accurately infer EF (mean absolute error 5.3%) over 1269 test patients. The presented multi-heartbeat video segmentation framework promises fast and coherent segmentation and motion tracking for the rich phenotypic analysis of echocardiography.
引用
收藏
页数:8
相关论文
共 19 条
[1]   Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain [J].
Avants, B. B. ;
Epstein, C. L. ;
Grossman, M. ;
Gee, J. C. .
MEDICAL IMAGE ANALYSIS, 2008, 12 (01) :26-41
[2]   VoxelMorph: A Learning Framework for Deformable Medical Image Registration [J].
Balakrishnan, Guha ;
Zhao, Amy ;
Sabuncu, Mert R. ;
Guttag, John ;
Dalca, Adrian, V .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (08) :1788-1800
[3]   Real-Time Video Super-Resolution with Spatio-Temporal Networks and Motion Compensation [J].
Caballero, Jose ;
Ledig, Christian ;
Aitken, Andrew ;
Acosta, Alejandro ;
Totz, Johannes ;
Wang, Zehan ;
Shi, Wenzhe .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2848-2857
[4]   Assessing the Generalizability of Temporally-Coherent Echocardiography Video Segmentation [J].
Chen, Yida ;
Zhang, Xiaoyan ;
Haggerty, Christopher M. ;
Stough, Joshua, V .
MEDICAL IMAGING 2021: IMAGE PROCESSING, 2021, 11596
[5]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
[6]   ASSESSMENT OF LEFT-VENTRICULAR EJECTION FRACTION AND VOLUMES BY REAL-TIME, 2-DIMENSIONAL ECHOCARDIOGRAPHY - COMPARISON OF CINEANGIOGRAPHIC AND RADIONUCLIDE TECHNIQUES [J].
FOLLAND, ED ;
PARISI, AF ;
MOYNIHAN, PF ;
JONES, DR ;
FELDMAN, CL ;
TOW, DE .
CIRCULATION, 1979, 60 (04) :760-766
[7]   Label Fusion in Atlas-Based Segmentation Using a Selective and Iterative Method for Performance Level Estimation (SIMPLE) [J].
Langerak, Thomas Robin ;
van der Heide, Uulke A. ;
Kotte, Alexis N. T. J. ;
Viergever, Max A. ;
van Vulpen, Marco ;
Pluim, Josien P. W. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (12) :2000-2008
[8]   Deep Learning for Segmentation Using an Open Large-Scale Dataset in 2D Echocardiography [J].
Leclerc, Sarah ;
Smistad, Erik ;
Pedrosa, Joao ;
Ostvik, Andreas ;
Cervenansky, Frederic ;
Espinosa, Florian ;
Espeland, Torvald ;
Berg, Erik Andreas Rye ;
Jodoin, Pierre-Marc ;
Grenier, Thomas ;
Lartizien, Carole ;
D'hooge, Jan ;
Lovstakken, Lasse ;
Bernard, Olivier .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (09) :2198-2210
[9]   Recurrent Aggregation Learning for Multi-view Echocardiographic Sequences Segmentation [J].
Li, Ming ;
Zhang, Weiwei ;
Yang, Guang ;
Wang, Chengjia ;
Zhang, Heye ;
Liu, Huafeng ;
Zheng, Wei ;
Li, Shuo .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 :678-686
[10]   Video-based AI for beat-to-beat assessment of cardiac function [J].
Ouyang, David ;
He, Bryan ;
Ghorbani, Amirata ;
Yuan, Neal ;
Ebinger, Joseph ;
Langlotz, Curtis P. ;
Heidenreich, Paul A. ;
Harrington, Robert A. ;
Liang, David H. ;
Ashley, Euan A. ;
Zou, James Y. .
NATURE, 2020, 580 (7802) :252-+