Nonlinear model reduction for control of distributed systems: a computer-assisted study

被引:132
作者
Shvartsman, SY [1 ]
Kevrekidis, IG [1 ]
机构
[1] Princeton Univ, Dept Chem Engn, Princeton, NJ 08544 USA
关键词
D O I
10.1002/aic.690440711
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Model reduction methodologies for the partial differential equations modeling distributed parameter systems constitute an important first step in controller design. A systematic computer-assisted study illustrating the use of two such methodologies (Approximate Inertial Manifolds and the Karhunen-Loeve expansion) in controlling (stabilizing) a nonlinear reaction-diffusion problem is presented. The approximation quality of the models, issues of computational implementation of the reduction procedure, as well as issues of closed-loop stability are addressed.
引用
收藏
页码:1579 / 1595
页数:17
相关论文
共 100 条
[31]   NONLINEAR GALERKIN METHOD IN THE FINITE-DIFFERENCE CASE AND WAVELET-LIKE INCREMENTAL UNKNOWNS [J].
CHEN, M ;
TEMAM, R .
NUMERISCHE MATHEMATIK, 1993, 64 (03) :271-294
[32]   Finite-dimensional control of parabolic PDE systems using approximate inertial manifolds [J].
Christofides, PD ;
Daoutidis, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 216 (02) :398-420
[33]   Nonlinear control of diffusion-convection-reaction processes [J].
Christofides, PD ;
Daoutidis, P .
COMPUTERS & CHEMICAL ENGINEERING, 1996, 20 (20) :S1071-S1076
[34]  
CHRISTOFIDES PD, 1998, IN PRESS CHEM ENG SC
[35]   CONTROL OF NOISY HETEROCLINIC CYCLES [J].
COLLER, BD ;
HOLMES, P ;
LUMLEY, JL .
PHYSICA D, 1994, 72 (1-2) :135-160
[36]  
CONSTANTIN PC, 1988, APPL MATH SCI SER, V70
[37]   CENTER MANIFOLDS OF FORCED DYNAMIC-SYSTEMS [J].
COX, SM ;
ROBERTS, AJ .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1991, 32 :401-436
[38]   POLE ASSIGNMENT FOR DISTRIBUTED SYSTEMS BY FINITE-DIMENSIONAL CONTROL [J].
CURTAIN, RF .
AUTOMATICA, 1985, 21 (01) :57-67
[39]  
DAINSON B, 1998, IN PRESS AICHE J
[40]   LOW-DIMENSIONAL MODELS FOR COMPLEX-GEOMETRY FLOWS - APPLICATION TO GROOVED CHANNELS AND CIRCULAR-CYLINDERS [J].
DEANE, AE ;
KEVREKIDIS, IG ;
KARNIADAKIS, GE ;
ORSZAG, SA .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1991, 3 (10) :2337-2354