Point-placement techniques and Temporal Self-similarity Maps for Visual Analysis of Surveillance Videos

被引:1
作者
Mendes, Gilson [1 ]
Paiva, Jose Gustavo S. [1 ]
Schwartz, William Robson [2 ]
机构
[1] Univ Fed Uberlandia, Fac Comp, Uberlandia, MG, Brazil
[2] Univ Fed Minas Gerais, Dept Comp Sci, Belo Horizonte, MG, Brazil
来源
2019 23RD INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV): BIOMEDICAL VISUALIZATION AND GEOMETRIC MODELLING & IMAGING | 2019年
关键词
Surveillance video; Information Visualization; Multidimensional Visualization; Events Detection;
D O I
10.1109/IV.2019.00030
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The manual analysis of surveillance videos is unfeasible due to the excessive amount of data, the associated subjectivity, or the eventual presence of distracting noise. Automatic summarization approaches provide little/no user interaction, limiting his/her comprehension regarding the involved phenomena. Visual analytics techniques represent a potential tool for such analysis, providing video representations that clearly communicate their content, potentially revealing patterns that may represent events of interest. In this paper, we present a methodology for visual analysis of surveillance video that combines point-placement techniques and Temporal Self-similarity Maps (TSSMs) to reveal the events occurrence structure and to enhance the comprehension of their temporal properties. Experiments in several surveillance scenarios demonstrate that our proposed methodology provides an effective events summarization and the exploration of both the structure of each event and the relationship among them, allowing the security agent to filter/explore those that represent potential alert situations.
引用
收藏
页码:127 / 132
页数:6
相关论文
共 16 条
[1]   Temporal Mapping of Surveillance Video [J].
Bagheri, Saeid ;
Zheng, Jiang Yu .
2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, :4128-4133
[2]   State of the Art Report on Video-Based Graphics and Video Visualization [J].
Borgo, R. ;
Chen, M. ;
Daubney, B. ;
Grundy, E. ;
Heidemann, G. ;
Hoeferlin, B. ;
Hoeferlin, M. ;
Leitte, H. ;
Weiskopf, D. ;
Xie, X. .
COMPUTER GRAPHICS FORUM, 2012, 31 (08) :2450-2477
[3]  
Buono P., 2011, DMS, P140
[4]  
Cheng Y, 2014, ABS APP ANAL, V2014, P1
[5]  
Cooper M, 2001, 2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL III, PROCEEDINGS, P378, DOI 10.1109/ICIP.2001.958130
[6]   Smart video summarization using mealy machine-based trajectory modelling for surveillance applications [J].
Dogra, Debi Prosad ;
Ahmed, Arif ;
Bhaskar, Harish .
MULTIMEDIA TOOLS AND APPLICATIONS, 2016, 75 (11) :6373-6401
[7]  
Goyette N., 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops), DOI 10.1109/CVPRW.2012.6238919
[8]   Evaluation of Fast-Forward Video Visualization [J].
Hoeferlin, Markus ;
Kurzhals, Kuno ;
Hoeferlin, Benjamin ;
Heidemann, Gunther ;
Weiskopf, Daniel .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012, 18 (12) :2095-2103
[9]   Evaluation of a System to Analyze Long-Term Images from a Stationary Camera [J].
Ishii, Akira ;
Abe, Tetsuya ;
Hakoda, Hiroyuki ;
Shizuki, Buntarou ;
Tanaka, Jiro .
Human Interface and the Management of Information: Information, Design and Interaction, Pt I, 2016, 9734 :275-286
[10]   Temporal video segmentation by event detection: A novelty detection approach [J].
Krishna M.V. ;
Bodesheim P. ;
Körner M. ;
Denzler J. .
Pattern Recognition and Image Analysis, 2014, 24 (02) :243-255