A strong and weak convergence theorem for resolvents of accretive operators in banach spaces

被引:3
作者
Iemoto, Shigeru [1 ]
Takahashi, Wataru [1 ]
机构
[1] Tokyo Inst Technol, Dept Math & Computat Sci, Meguro Ku, Tokyo 152, Japan
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2007年 / 11卷 / 03期
关键词
convex minimization problem; m-accretive operator; resolvent; proximal point algorithm;
D O I
10.11650/twjm/1500404765
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first introduce an iterative sequence of Mann's type and Halpern's type for finding a zero point of an m-accretive operator in a real Banach space. Then we obtain the strong and weak convergence by changing control conditions of the sequence. The result improves and extends a strong convergence theorem and a weak convergence theorem obtained by Kamimura and Takahashi [9], simultaneously.
引用
收藏
页码:915 / 928
页数:14
相关论文
共 30 条
[1]   INFINITE PRODUCTS OF RESOLVENTS [J].
BREZIS, H ;
LIONS, PL .
ISRAEL JOURNAL OF MATHEMATICS, 1978, 29 (04) :329-345
[3]   STRONGLY CONVERGENT ITERATIVE SOLUTION OF 0 EPSILON U(X) FOR A MAXIMAL MONOTONE OPERATOR-U IN HILBERT-SPACE [J].
BRUCK, RE .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 48 (01) :114-126
[4]  
BRUCK RE, 1979, NONLINEAR ANAL, V3, P279, DOI DOI 10.1016/0362-546X(79)90083-X
[5]  
GULER O, 1991, SIAM J CONTROL OPTIM, V29, P403, DOI 10.1137/0329022
[6]   FIXED POINTS OF NONEXPANDING MAPS [J].
HALPERN, B .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (06) :957-&
[7]  
JUNG JS, 1991, KODAI MATH J, V14, P358
[8]   Weak and strong convergence of solutions to accretive operator inclusions and applications [J].
Kamimura, S ;
Takahashi, W .
SET-VALUED ANALYSIS, 2000, 8 (04) :361-374
[9]   Approximating solutions of maximal monotone operators in Hilbert spaces [J].
Kamimura, S ;
Takahashi, W .
JOURNAL OF APPROXIMATION THEORY, 2000, 106 (02) :226-240
[10]   MEAN VALUE METHODS IN ITERATION [J].
MANN, WR .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 4 (03) :506-510