Analysis of reflection and transmission from a planar NID-dispersive slab

被引:3
作者
Bhatti, Nayab [1 ]
Naqvi, Qaisar Abbas [1 ]
Fiaz, Muhammad Arshad [1 ]
机构
[1] Quaid I Azam Univ, Dept Elect, Islamabad 45320, Pakistan
来源
OPTIK | 2018年 / 172卷
关键词
Non-integer dimensional space; Lorentz-Drude model; Reflection and transmission; Metamaterials; NEGATIVE METAMATERIALS; MEDIA; RADIATION; CONTINUUM; BOUNDARY; FRACTALS; SPACE; FIELD; WAVE;
D O I
10.1016/j.ijleo.2018.06.087
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Behavior of transmitted and reflected power from a planar non-integer dimensional lossless dispersive slab, placed in free space, is explored for uniform electromagnetic plane wave excitation. Dispersion has been incorporated through the Lorentz-Drude model. As the frequency of excitation increases, the dispersive slab respectively behaves as epsilon positive, double negative, mu negative, double positive meta-material. Effects of variation of angle of incidence, width of the slab and frequency of excitation on behavior of the powers have been noted taking different values of the parameter modeling non-integer dimensional space.
引用
收藏
页码:278 / 294
页数:17
相关论文
共 42 条
[1]   Scattering of electromagnetic plane wave from a low contrast circular cylinder buried in non-integer dimensional Half Space [J].
Abbas, Musarat ;
Rizvi, Azhar Abbas ;
Fiaz, Muhammad Arshad ;
Naqvi, Qaisar Abbas .
JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2017, 31 (03) :263-283
[2]  
Alu A., 2003, IEEE T ANTENNAS PROP, V51
[3]  
[Anonymous], IEEE T ANTENNAS PROP
[4]   REFLECTION AND TRANSMISSION AT DIELECTRIC-FRACTAL INTERFACE [J].
Asad, H. . ;
Zubair, M. . ;
Mughal, M. J. .
PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2012, 125 :543-558
[5]  
Asad H., 2012, J ELECTROMAGN WAVES, V26
[6]   Microwave applications of single negative materials [J].
Awai, I. ;
Matsuda, I. ;
Hotta, M. ;
Sanada, A. ;
Kubo, H. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2006, 26 (10-11) :1811-1815
[7]   Mapping physical problems on fractals onto boundary value problems within continuum framework [J].
Balankin, Alexander S. .
PHYSICS LETTERS A, 2018, 382 (04) :141-146
[8]   Effective degrees of freedom of a random walk on a fractal [J].
Balankin, Alexander S. .
PHYSICAL REVIEW E, 2015, 92 (06)
[9]   Towards a physics on fractals: Differential vector calculus in three-dimensional continuum with fractal metric [J].
Balankin, Alexander S. ;
Bory-Reyes, Juan ;
Shapiro, Michael .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 444 :345-359
[10]   Stresses and strains in a deformable fractal medium and in its fractal continuum model [J].
Balankin, Alexander S. .
PHYSICS LETTERS A, 2013, 377 (38) :2535-2541